Introduction to Mathematics

Farokhlagha Moazami
Cyberspace Research Institute
Shahid Beheshti University
Tehran, Iran
f_moazemi@sbu.ac.ir

Outline

- Group and preliminary properties
- > Elliptic curve group
- > Ring and field
- polynomial ring

Group Definition

Definition: The set H with the operation o is called a **group** if

- \blacktriangleright If $a, b \in H$, then $a \circ b \in H$ (Closure).
- $(a \circ b) \circ c = a \circ (b \circ c)$, for all $a, b, c \in H$ (Associative).
- There exists an identity element in the set H. For all $a \in H$, eoa = aoe = a (Existence of Identity).
- Every element of the set H have invers in the set H. For all $a \in H$, there exists an element a^{-1} in the set H that $a \circ a^{-1} = a^{-1} \circ a = e$ (Existence of Inverse).

Example

Example: The set of residue integers with the addition operator $(\mathbb{Z}_n, +)$ is a commutative group.

The set \mathbb{Z}_n^* with the multiplication operator (\mathbb{Z}_n^*,\times) is an abelian group.

Example: Let us define a set $G = \langle \{a, b, c, d\}, \bullet \rangle$ and the operation as shown in the Table

•	а	b	С	d
а	а	b	c	d
b	b	c	d	а
c	c	d	а	b
d	d	а	b	С

Example: (\mathbb{Z}, \times) is a not group.

Example: $(\mathbb{Z}, -)$ is not a group.

Definition: Let (R, +) be a group. The subset S of R is called a **subgroup** of R. if and only if:

- $\triangleright a \in S$ and $b \in S \rightarrow a + b$ belong to S.
- $\triangleright a \in S \rightarrow -a \in S$.

Example: Is the group $H = <\mathbb{Z}_{10}, +>$ a subgroup of the group $G = <\mathbb{Z}_{12}, +>$?

Definition: A group G which contains elements α with maximum order $ord(\alpha) = |G|$ is said to be **cyclic**.

Definition: The **order** of an element $a \in G$, denoted by ord(a), is the smallest positive integer n such that $aoao ... oa = a^n = e$.

Definition: A group (G, o) is **finite** if it has a finite number of elements, We denote the cardinality of G by |G|.

Elements with maximum order are called **generators** or **primitive elements**.

In other word, the group G is said to be **cyclic** if there exists an element $g \in G$, st. every element of G can be written as g^m for some integer m.

The elements in the group are enumerated as

$$\{g^0, g^1, \cdots, g^r, g^{r+1}, \cdots\}.$$

The convention is $g^{-m} = (g^{-1})^m$, and $g^0 = 1$.

Consider the group $G = (\mathbb{Z}_n^*, \times_{11})$,

 $G = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} = 10,$

 $\alpha = 2$ is a generator of G.

$$< 2 > = G$$

Preliminary Properties

Every group G of a prime order p is cyclic. Every element g of G, except the identity is its generator.

If p is prime, then \mathbb{Z}_p^* is cyclic.

An element α having order p-1 is called a primitive element modulo p.

Observe that α is a primitive element if and only if

$$\left\{\alpha^i \middle| 0 \le i \le p-2\right\} = \mathbb{Z}_p^*.$$

Preliminary Properties

Theorem (Lagrange): Suppose G is a multiplicative group of order n, and $g \in G$. Then the order of g divides n.

Theorem (Lagrange): Suppose G is a multiplicative group of order n, and

- H is a subgroup of G. Then |H| divides |G|.
- For all a in \mathbb{Z}_n^* , $a^{\varphi(n)} = 1$
- Why is this true? because \mathbb{Z}_n^* is a group and $\varphi(n)$ is its size...

2/1/2021 10

Preliminary Properties

Theorem (Fermat): If p is prime and a is an integer not divisible by p, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Furthermore, for every integer a we have

$$a^p \equiv a \pmod{p}$$

Elliptic Curve

An Elliptic Curve is a curve given by an equation

$$y^2 = x^3 + ax + b$$

Consider the set E of solution (x, y) to the equation

$$E = \{ (x,y): y^2 = x^3 + ax + b \}$$

Our aim is to construct an operation on E such that (E,o) be a group.

To do this we consider a non-singular Elliptic curve.

Singular Elliptic Curve

A Singular Cubic with Distinct Tangent Directions

$$y^2 = x^2(x+1)$$

A Singular Cubic with A Cusp

$$y^2 = x^3$$

Elliptic Curves

$$y^2 = x^3 - 5x + 8$$

Elliptic Curves

$$E: Y^2 = X^3 - 9X$$

Doubling a Point P on E

Vertical Lines and an Extra Point at Infinity

Let $P=(x_1,y_1)$, $Q=(x_2,y_2) \in E$ so $P+Q=(x_3,y_3)$

$$\begin{cases} y = \lambda x + \beta \\ y^2 = x^3 + ax + b \end{cases}$$

$$(\lambda x + \beta)^2 = x^3 + ax + b \Longrightarrow$$

$$x^3 + (-\lambda^2)x^2 + (a - 2\lambda\beta)x + (b - \beta^2) = 0$$

Let
$$P=(x_1,y_1)$$
, $Q=(x_2,y_2) \in E$ so $P+Q=(x_3,y_3)$

$$x_3 = \lambda^2 - x_1 - x_2$$

$$y_3 = \lambda (x_1 - x_3) - y_1$$
where
$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1}, & \text{if } P \neq Q \\ \frac{3x_1^2 + a}{2y_1}, & \text{if } P = Q \end{cases}$$

Group Operation +

Properties of "Addition" on E

Theorem: The addition law on E has the following properties:

a)
$$P + \mathcal{O} = \mathcal{O} + P = P$$

b)
$$P + (-P) = \mathcal{O}$$

c)
$$(P + Q) + R = P + (Q + R)$$

d)
$$P + Q = Q + P$$

for all
$$P \in E$$
.

for all
$$P \in E$$
.

for all P,Q,R
$$\in$$
 E.

for all
$$P,Q \in E$$
.

Definition:

A ring R is a set of elements with two binary operations $(R, +, \times)$, such that for all $a, b, c \in R$ the following are satisfied:

- > R is an abelian group under addition.
- \triangleright The closure property of R is satisfied under multiplication.
- > The associativity property of R is satisfied under multiplication.
- There exists a multiplicative identity element denoted by 1 such that for every $a \in R$, $a \times 1 = 1 \times a = a$
- For all $a, b, c \in R$ $a \times (b + c) = a \times (b + c) = a \times b + a \times c$ (Distributive Law).

2/1/2021 25

Definition of a ring

Definition of a Field

A **field** F is a commutative ring which satisfies the following properties

- Multiplicative inverse: For every element $a \in F$ except 0, there exists a unique element a^{-1} such that $\mathbf{a} \times \mathbf{a}^{-1} = \mathbf{a}^{-1} \times \mathbf{a} = \mathbf{1}$. \mathbf{a}^{-1} is called the multiplicative inverse of the element a.
- No zero divisors: If $a, b \in F$ and $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, then either $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$.
- \triangleright **Example:** The residue class \mathbb{Z}_n is a field if and only if n is prime.

2/1/2021 27

Definition of a Field

Let *R* be a commutative ring, with unit element 1.

A polynomial in the variable $x \in R$, is

$$f(x) = \sum_{i=1}^{n} a_i x^i$$
 where $a_0, a_1, \dots, a_n \in R$

If the leading coefficient of the polynomial f, denoted by a_n is nonzero, then the **degree** of the polynomial is said to be n.

If for a particular value of the variable, $r \in R$: i.e. f(r) = 0, Then r is called a <u>root or zero</u> of f.

2/1/2021 29

Consider two polynomials $f(x) = \sum_{i=0}^{n} a_i x^i$ and $g(x) = \sum_{i=0}^{m} b_i x^i$, $n \ge m$.

$$(f+g)(x) = \sum_{\substack{i=1\\n+m}}^{m} (a_i+b_i)x^i + \sum_{\substack{i=m+1\\k}}^{n} a_ix^i,$$

$$(f,g)(x) = \sum_{k=0}^{n+m} c_kx^k, \quad c_k = \sum_{i=0}^{n} (a_ib_{k-i})x^i$$

Let R be a commutative ring. The set of all polynomials over R in the variable x is denoted by R[x]. Then (R[x], +, .) is a ring.

Example: Consider the ring $R = (\mathbb{Z}_6, +, \times)$

$$f_1(x) = 3x^2 + 4x + 4$$

$$f_2(x) = 4x^7 + 3x^2 + 3x + 1$$

$$f_1(x) + f_2(x) = 4x^7 + 6x^2 + 7x + 5 = 4x^7 + 0 + x + 5 = 4x^7 + x + 5$$

$$g_1(x) = 5x + 3, g_2(x) = x + 2$$

$$g_1(x)$$
. $g_2(x) = 5x^2 + 10x + 3x + 6 = 5x^2 + 13x + 6 = 5x^2 + x$

Theorem: Let $f(x), g(x) \in R[x], g(x) \neq 0$. Then there are uniquely determined polynomials $q(x), r(x) \in R[x]$, with f(x) = q(x)g(x) + r(x) and r(x) = 0 or $\deg r(x) < \deg g(x)$.

The polynomials q(x) and r(x) are referred to as the quotient and remainder polynomials.

Example:
$$3x^5 + 2x^3 + x + 1$$
 $x^3 + 1$ $3x^2 + 2$ $3x^2 + 2$ $2x^3 + 2x^2 + x + 1$ $2x^3 + 2$ $2x^2 + x + 4$

Question

