
S C I E N C E
P A S S I O N

T E C H N O L O G Y

E�ective Attacks
from Ine�ective Faults
Maria Eichlseder
Includes results of joint works with Joan Daemen, Christoph Dobraunig, Hannes Groß,
Thomas Korak, Stefan Mangard, Florian Mendel, Robert Primas

ISCwsISC, 22 February 2021

www.iaik.tugraz.at

Ç Outline

� Introduction to Fault Attacks
Flipping Bits in Symmetric Crypto
A Detour to Di�erential Cryptanalysis

� Countermeasures
Error Detection & Infection
Fault Attack Variants
Side-Channel Countermeasures

� Statistical Ine�ective Fault Attacks
Why & how SIFA works
SIFA against masked, redundant implementations

� Defending against SIFA
Criterion for SIFA resistance
A combined countermeasure

1 / 36

Introduction to Fault Attacks
�

Causing Faulty Computations

Extreme environmental conditions or targeted manipulations can cause errors
in a processor’s operation due to physical corruption. Examples:

Y Very high temperature

J Unsupported supply voltage or current, voltage glitches

A Overclocking, clock glitches

� Excessive memory accesses

» Strong electric or magnetic fields

± Ionizing radiation

A Laser
2 / 36

Possible Fault E�ects

Fault e�ects in electronic devices have been studied at least since the 1950s,
for example for radiation from nuclear testing:
§ Long-term e�ects, e.g., cumulative e�ect of “Total Ionization Dose (TID)”

� Sudden e�ects, e.g., charged particle hits the circuit: “Single-Event E�ects (SEE)”

Causing permanent damage (hard error)
e.g., shorts between ground and power: “Single-Event Latch-ups (SEL)”
Causing temporary damage (so� error)
e.g., transient pulse flips a bit in memory cell: “Single-Event Upsets (SEU)”

Some possible e�ects in processors:
Flip a data bit
Reset a data bit to 0
Skip an instruction

3 / 36

Possible Fault E�ects

Fault e�ects in electronic devices have been studied at least since the 1950s,
for example for radiation from nuclear testing:
§ Long-term e�ects, e.g., cumulative e�ect of “Total Ionization Dose (TID)”

� Sudden e�ects, e.g., charged particle hits the circuit: “Single-Event E�ects (SEE)”

Causing permanent damage (hard error)
e.g., shorts between ground and power: “Single-Event Latch-ups (SEL)”
Causing temporary damage (so� error)
e.g., transient pulse flips a bit in memory cell: “Single-Event Upsets (SEU)”

Some possible e�ects in processors:
Flip a data bit
Reset a data bit to 0
Skip an instruction

3 / 36

Possible Fault E�ects

Fault e�ects in electronic devices have been studied at least since the 1950s,
for example for radiation from nuclear testing:
§ Long-term e�ects, e.g., cumulative e�ect of “Total Ionization Dose (TID)”

� Sudden e�ects, e.g., charged particle hits the circuit: “Single-Event E�ects (SEE)”

Causing permanent damage (hard error)
e.g., shorts between ground and power: “Single-Event Latch-ups (SEL)”
Causing temporary damage (so� error)
e.g., transient pulse flips a bit in memory cell: “Single-Event Upsets (SEU)”

Some possible e�ects in processors:
Flip a data bit
Reset a data bit to 0
Skip an instruction

3 / 36

Scenario: Faulting a Block Cipher

EK

M q

C R

K ¤

3

EK

M q

C� R�

K ¤

3
�

Multiple
executions

Get correct
ciphertext C
and faulty C�

4 / 36

Scenario: Faulting a Block Cipher

EK

M q

C R

K ¤

3 Round

3 Round

3 Round

Ke
yS

ch
ed

ul
e

P

EK

M q

C� R�

K ¤

3 Round

3 Round

3 Round

Ke
yS

ch
ed

ul
e

P

Multiple
executions

Get correct
ciphertext C
and faulty C�

4 / 36

Di�erential Fault Attacks [BS97]

1. Obtain correct C R and faulty C� R�

2. Compute the di�erence ∆C = C⊕ C� and
derive the output di�erence of S-box S

3. For each possible guess of (parts of) K4:

Partially decrypt C, C� and check if the
observed di�erence at the input of S
matches the fault model
If not, reject key candidate

4. Repeat to further narrow down the keys

K0

K1

K2

K3

K4

M qK ¤

S S S S
Round

1

S S S S

Round
2

S S S S

Round
3

S S S S

Round
4

C R

�

S

K4

5 / 36

Di�erential Fault Attacks [BS97]

1. Obtain correct C R and faulty C� R�

2. Compute the di�erence ∆C = C⊕ C� and
derive the output di�erence of S-box S

3. For each possible guess of (parts of) K4:

Partially decrypt C, C� and check if the
observed di�erence at the input of S
matches the fault model
If not, reject key candidate

4. Repeat to further narrow down the keys

K0

K1

K2

K3

K4

M qK ¤

S S S S
Round

1

S S S S

Round
2

S S S S

Round
3

S S S S

Round
4

C R

�

S

K4

5 / 36

Di�erential Fault Attacks [BS97]

1. Obtain correct C R and faulty C� R�

2. Compute the di�erence ∆C = C⊕ C� and
derive the output di�erence of S-box S

3. For each possible guess of (parts of) K4:

Partially decrypt C, C� and check if the
observed di�erence at the input of S
matches the fault model
If not, reject key candidate

4. Repeat to further narrow down the keys

K0

K1

K2

K3

K4

M qK ¤

S S S S
Round

1

S S S S

Round
2

S S S S

Round
3

S S S S

Round
4

C R

�

S

K4

5 / 36

Di�erential Fault Attacks [BS97]

1. Obtain correct C R and faulty C� R�

2. Compute the di�erence ∆C = C⊕ C� and
derive the output di�erence of S-box S

3. For each possible guess of (parts of) K4:

Partially decrypt C, C� and check if the
observed di�erence at the input of S
matches the fault model
If not, reject key candidate

4. Repeat to further narrow down the keys

K0

K1

K2

K3

K4

M qK ¤

S S S S
Round

1

S S S S

Round
2

S S S S

Round
3

S S S S

Round
4

C R

�

S

K4

5 / 36

A Detour to Di�erential Cryptanalysis

One of the two most important cryptanalytic attacks for secret-key crypto
Biham and Shamir [BS90]

Chosen-plaintext attack (no cheating with the implementation!)

Main idea:

1. Predict e�ect of plaintext di�erence ∆M = qM⊕pM∗ on ciphertext
di�erence ∆C = Q C⊕R C∗ without knowing¤ K

2. Use prediction as distinguisher to recover the key

6 / 36

Di�erential Properties of S-boxes

∆in = 8 → ∆out =?

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 2 0 4 3 9 5 6 7 1 d e f a 8 c b

7 / 36

Di�erential Properties of S-boxes

∆in = 8 → ∆out =?

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 2 0 4 3 9 5 6 7 1 d e f a 8 c b

∆in = 8

∆out = 3

7 / 36

Di�erential Properties of S-boxes

∆in = 8 → ∆out =?

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 2 0 4 3 9 5 6 7 1 d e f a 8 c b

∆in = 8

∆out = d

7 / 36

Di�erential Properties of S-boxes

∆in = 8 → ∆out =?

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 2 0 4 3 9 5 6 7 1 d e f a 8 c b

∆in = 8

∆out = a

7 / 36

Di�erential Properties of S-boxes

∆in = 8 → ∆out ∈ {3, a, c, d}

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(x) 2 0 4 3 9 5 6 7 1 d e f a 8 c b

Knowing the value tells us the di�erence

Knowing the di�erence tells us (something about) the value:

solutions(∆in,∆out) := {x : S(x ⊕∆in) ⊕ S(x) = ∆out}
7 / 36

Di�erential Distribution Table (DDT)

I\O 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 - - - - - - - - - - - - - - -
1 - 4 4 - - - - 4 - - - - 4 - - -
2 - - 4 4 - - 4 - - - - - - - - 4
3 - 4 - 4 4 - - - - - - - - - 4 -
4 - - 4 - 4 4 - - - - - 4 - - - -
5 - - - 4 - 4 - 4 - 4 - - - - - -
6 - - - - 4 - 4 4 - - - - - 4 - -
7 - 4 - - - 4 4 - - - 4 - - - - -
8 - - - 4 - - - - - - 4 - 4 4 - -
9 - 4 - - - - - - - - - 4 - 4 - 4
a - - - - - 4 - - - - - - 4 - 4 4
b - - 4 - - - - - - 4 - - - 4 4 -
c - - - - - - - - 16 - - - - - - -
d - - - - 4 - - - - 4 4 - - - - 4
e - - - - - - - 4 - - 4 4 - - 4 -
f - - - - - - 4 - - 4 - 4 4 - - -

8 / 36

Design of AES [DR02] – Round Function (10 or 12 or 14 Rounds)

1 SubBytes (SB)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

aij
b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

bij

S

2 ShiftRows (SR)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

3 MixColumns (MC)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

aij
b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

⊗

 2 3 1 11 2 3 1
1 1 2 3
3 1 1 2

a0j

a1j

a2j

a3j

b0j

b1j

b2j

b3j

4 AddRoundKey (AK)

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

k00 k01 k02 k03

k10 k11 k12 k13

k20 k21 k22 k23

k30 k31 k32 k33

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33

+ −−

9 / 36

AES – Simple DFA
SB – SubBytes

SR – ShiftRows

MC – MixColumnsAssume the attacker can cause precise 1-bit flips
in Round 9 of AES, before S-box

For each of 28 key guesses,
Test if the partial decryption produces the expected 1-bit flip.

�

SB SR MC SB SR

K8 K9 K10

| Round 9 | Round 10 |
O

10 / 36

AES – Piret and Quisquater’s DFA [PQ03]
SB – SubBytes

SR – ShiftRows

MC – MixColumnsAssume the attacker can cause imprecise 1-byte errors

For each of 232 key guesses,
Test if the partial decryption produces the expected 1-byte error.
(This can be optimized to require only 2 faulty encryptions to recover the full key)

�

SB SR MC SB SR

K8 K9 K10

| Round 9 | Round 10 |
O

11 / 36

Countermeasures
�

and Countermeasures against Countermeasures :-)

Types of Countermeasures

� Physical level

Shielding of the circuit so that it’s harder to access
Sensors that detect tampering

3 Implementation-level

Detect or correct errors
Randomize the execution details

9 Protocol-level

Prevent an attacker from collecting useful data by limiting key usage,
randomizing inputs, . . .

12 / 36

Error Detection

For DFA, the attacker requires the faulty ciphertext C� R�

and the correct ciphertext C R for the same plaintextM q

� Countermeasure 1: Error Detection

Check the correctness of each encryption
For example by evaluating it twice
Only return result if correct

EK EK

M q

C R C′ R

=?

13 / 36

Error Detection

For DFA, the attacker requires the faulty ciphertext C� R�

and the correct ciphertext C R for the same plaintextM q

� Countermeasure 2: Authenticated Encryption (AEAD)
AEAD typically prevents DFA by design:

E During AEAD Encryption, a random nonce is
used to “randomize” the inputsM→ cannot
get C, C� for the sameM

D During AEAD Decryption, results are only
returned if the authentication tag was
verified correctly, so we usually don’t get C�

14 / 36

Infection-based Countermeasures

For DFA, the attacker requires the faulty ciphertext C� R�

and the correct ciphertext C R for the same plaintextM q

� Countermeasure 3: Infection

Do 2 encryptions + many dummy rounds
If error detected, return dummy garbage
Can perform checks a�er every round
Example for AES: [TBM14]

EK EK E$

M q β Y

C R C′ R β Y

=? =β?

returnR if success, elseY
15 / 36

Ine�ective Fault Attacks (IFA) [Cla07] and Friends

Observation: In practice, it’s o�en easier to cause biased errors than bitflips

Example: Stuck-at-0 error sets bit (or byte) to 0

If the attacker can reliably cause such errors, there are very simple attacks:

0 K10

�

SB SR

K9 K10

| Round 10 |
16 / 36

Ine�ective Fault Attacks (IFA) [Cla07] and Friends

Observation: In practice, it’s o�en easier to cause biased errors than bitflips

Example: Stuck-at-0 error sets bit (or byte) to 0

If the attacker can reliably cause such errors, there are very simple attacks:

0 K10

�

SB SR

K9 K10

| Round 10 |

defeats error detection

16 / 36

Statistical Fault Attacks (SFA) [FJLT13]

Assume the attacker can cause a biased error (e.g., reset to 0 with prob. 1
2).

For each of 232 key guesses,
Test if the partial decryption produces a non-uniform distribution�with a
metric such as the Squared Euclidean Imbalance (SEI) or Pearson’s χ2:

SEI(p̂) =
∑
x∈X

∣∣∣∣p̂(x)− 1
#X

∣∣∣∣2

�
�

SB SR MC SB SR

K8 K9 K10

| Round 9 | Round 10 |
O

17 / 36

Side-Channel Countermeasures

IFA allows to “peek” at intermediate values, similar to side-channel attacks.

Many side-channel countermeasures help against IFA and friends:

ù Hiding: Randomize the order of instructions, insert dummy instructions,
etc., to make it harder for the attacker to hit the right bit

ù Masking: Replace each data bit x by d + 1 random bits x0, x1, . . . , xd with

x = x0 ⊕ x1 ⊕ . . .⊕ xd

Then learning up to d bits xi is useless for the attacker.

18 / 36

Statistical Ine�ective Fault Attacks
�

Statistical Ine�ective Fault Attacks (SIFA) [DEK+18; DEG+18]

So far, we inserted faults right before / a�er S-boxes.
When the attacker can only place 1 fault, error detection and/or masking
prevent these attacks.

­ SIFA idea 1: Use only faulty encryptions where no fault was detected:
This condition may lead to a bias in some intermediate variables!

­ SIFA idea 2: Place fault inside the S-box circuit,
but measure before/a�er S-box with SFA methods!

This approach can attack implementations with masking and error detection.
It may, however, require more data (1000s of messages).

19 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

How are values distributed if we consider only ine�ective faults X� = X?

x�

00 01 10 11

x

00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(a) Stuck-at-0

x�

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0
11 1

4
1
4

1
4

1
4

0 1 2 30
0.25

0.5
0.75

1

(b) Random-AND

x�

00 01 10 11

x

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(c) Bit-flip
20 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

How are values distributed if we consider only ine�ective faults X� = X?

x�

00 01 10 11

x

00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(a) Stuck-at-0

x�

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0
11 1

4
1
4

1
4

1
4

0 1 2 30
0.25

0.5
0.75

1

(b) Random-AND

x�

00 01 10 11

x

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(c) Bit-flip
20 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

How are values distributed if we consider only ine�ective faults X� = X?

x�

00 01 10 11

x

00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(a) Stuck-at-0

x�

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0
11 1

4
1
4

1
4

1
4

0 1 2 30
0.25

0.5
0.75

1

(b) Random-AND

x�

00 01 10 11

x

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(c) Bit-flip
20 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

How are values distributed if we consider only ine�ective faults X� = X?

x�

00 01 10 11

x

00 1 0 0 0
01 1 0 0 0
10 1 0 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(a) Stuck-at-0

x�

00 01 10 11

x

00 1 0 0 0
01 1

2
1
2 0 0

10 1
2 0 1

2 0
11 1

4
1
4

1
4

1
4

0 1 2 30
0.25

0.5
0.75

1

(b) Random-AND

x�

00 01 10 11

x

00 0 0 0 1
01 0 0 1 0
10 0 1 0 0
11 1 0 0 0

0 1 2 30
0.25

0.5
0.75

1

(c) Bit-flip

non-uniform distribution

20 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

1. Inject fault with non-uniform distribution peq(x�) = P[X� = x� | X� = X]

2. Keep only samples where no error was detected (ine�ective fault, like IFA)

Fault Ine�ectivity Rate πeq = P[X� = X] is the ratio of these samples

3. Guess part of key and compute backwards as before

4. Statistically test distribution peq(x�) like SFA: is it non-uniform?

CHI (Pearson’s χ2) or SEI (Squared Euclidean Imbalance)
LLR (log-likelihood ratio) if ine�ective distribution peq(·) is known

5. If it looks uniform, reject key candidate; if non-uniform, keep it
This also works if the fault induction method is noisy

(only works sometimes, with probability σ)
21 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

1. Inject fault with non-uniform distribution peq(x�) = P[X� = x� | X� = X]

2. Keep only samples where no error was detected (ine�ective fault, like IFA)

Fault Ine�ectivity Rate πeq = P[X� = X] is the ratio of these samples

3. Guess part of key and compute backwards as before

4. Statistically test distribution peq(x�) like SFA: is it non-uniform?

CHI (Pearson’s χ2) or SEI (Squared Euclidean Imbalance)
LLR (log-likelihood ratio) if ine�ective distribution peq(·) is known

5. If it looks uniform, reject key candidate; if non-uniform, keep it
This also works if the fault induction method is noisy

(only works sometimes, with probability σ)
21 / 36

SIFA Idea 1: Ine�ective Faults & Fault Distribution Tables

1. Inject fault with non-uniform distribution peq(x�) = P[X� = x� | X� = X]

2. Keep only samples where no error was detected (ine�ective fault, like IFA)

Fault Ine�ectivity Rate πeq = P[X� = X] is the ratio of these samples

3. Guess part of key and compute backwards as before

4. Statistically test distribution peq(x�) like SFA: is it non-uniform?

CHI (Pearson’s χ2) or SEI (Squared Euclidean Imbalance)
LLR (log-likelihood ratio) if ine�ective distribution peq(·) is known

5. If it looks uniform, reject key candidate; if non-uniform, keep it
This also works if the fault induction method is noisy

(only works sometimes, with probability σ)
21 / 36

Example: Bytewise Random-AND and Infection Countermeasure

Fault model: Bytewise fault that flips each 1 to 0 with probability 1
2

Fault ine�ectivity rate: πeq = (3/4)8 ≈ 10 %

Implementation: AES + infection countermeasure, target round 40 of 22+22=44

Hit a suitable round with prob. σ ≈ 0.315 among ine�ective samples.
Distribution peq(x) for correct key and uniform distribution θ:

peq(x) = σ · 28−hw(x)/38 + (1− σ) · 2−8.

0 20 40 60 80 100 120 140 160 180 200 220 2400.0000
0.0050
0.0100
0.0150

p(x)
θ(x)

22 / 36

Example: Bytewise Random-AND and Infection Countermeasure

Fault model: Bytewise fault that flips each 1 to 0 with probability 1
2

Fault ine�ectivity rate: πeq = (3/4)8 ≈ 10 %

Implementation: AES + infection countermeasure, target round 40 of 22+22=44

Hit a suitable round with prob. σ ≈ 0.315 among ine�ective samples.
Distribution peq(x) for correct key and uniform distribution θ:

peq(x) = σ · 28−hw(x)/38 + (1− σ) · 2−8.

0 20 40 60 80 100 120 140 160 180 200 220 2400.0000
0.0050
0.0100
0.0150

p(x)
θ(x)

22 / 36

Example: Bytewise Random-AND and Infection Countermeasure

500 1000
21

23

25

27

NLLR

LLR∗W µ∗W LLRR µR

(a) LLR(p̂) statistic

500 1000

28

29

NCHI

CHI∗W µ∗W CHIR µR

(b) CHI(p̂) statistic (similar to SEI)
23 / 36

SIFA Idea 2: Faulting Inside an S-box

So far, we placed the fault before the S-box and tested at the same position

We can also place the fault inside the S-box and test at the input or output

S � � fault

� test

Can turn bitflip faults into nice non-uniform ine�ective distributions
Can work even for implementations protected with masking

24 / 36

SIFA on Masked Implementations with Detection Countermeasures

...

Implementation view

Round R−1

Round R X

•�

...

Analysis view
K
Y

•�

25 / 36

https://thenounproject.com/term/masks/1595665/

SIFA Example: Inside a Masked S-box Circuit

Example S-box: A smaller version of SHA-3’s S-box (χ)

3-bit input a, b, c, masked as

a = a0 ⊕ a1

b = b0 ⊕ b1

c = c0 ⊕ c1

3-bit output r, s, t, masked as

r = r0 ⊕ r1

s = s0 ⊕ s1

t = t0 ⊕ t1

Implemented as circuit of instructions / gates XOR⊕, AND�, NOT	
26 / 36

SIFA Example: Inside a Masked S-box Circuit

Input: {a0, a1, b0, b1, c0, c1}

T0 ← b0 � c1 ; T2 ← a1 � b1
T1 ← b0 � c0 ; T3 ← a1 � b0
T0 ← T0 � a0 ; T2 ← T2 � c1
r0 ← T0 � T1 ; t1 ← T2 � T3

T0 ← c0 � a1 ; T2 ← b1 � c1
T1 ← c0 � a0 ; T3 ← b1 � c0
T0 ← T0 � b0 ; T2 ← T2 � a1
s0 ← T0 � T1 ; r1 ← T2 � T3
�a0
T0 ← a0 � b1 ; T2 ← c1 � a1
T1 ← a0 � b0 ; T3 ← c1 � a0
T0 ← T0 � c0 ; T2 ← T2 � b1
t0 ← T0 � T1 ; s1 ← T2 � T3

Output: {r0, r1, s0, s1, t0, t1}

a0 a1 b0 b1 c0 c1T0T1 T2 T3

r0 r1 s0 s1 t0 t1

A0 N0t0 c1t0 A1a1t0 b1t0A2 N0t1 c0t0 A3a1t1 b0t1X0 a0t0 X1c1t1X2X0t0A2t0 X3 X1t0 A3t0

A4 N1t0a1t2 A5b1t1 c1t2A6 N1t1a0t1 A7b1t2 c0t2X4 b0t2 X5a1t3 X6X4t0A6t0 X7 X5t0 A7t0
A8 N2t0 b1t3 A9c1t3a1t4Aa N2t1 b0t3 Abc1t4a0t3X8 c0t3 X9b1t4 XaX8t0Aat0 Xb X9t0 Abt0

27 / 36

SIFA Example: Inside a Masked S-box Circuit

Cause a bitflip fault in �a0
at the indicated moment

The faulty value goes into 3 �s

Correctness of the �-output
depends on the other input

if the other input is 0,
the �-output is correct
if the other input is 1,
the �-output is faulty

a0 a1 b0 b1 c0 c1T0T1 T2 T3

r0 r1 s0 s1 t0 t1

A0 N0t0 c1t0 A1a1t0 b1t0A2 N0t1 c0t0 A3a1t1 b0t1X0 a0t0 X1c1t1X2X0t0A2t0 X3 X1t0 A3t0

A4 N1t0a1t2 A5b1t1 c1t2A6 N1t1a0t1 A7b1t2 c0t2X4 b0t2 X5a1t3 X6X4t0A6t0 X7 X5t0 A7t0
A8 N2t0 b1t3 A9c1t3a1t4Aa N2t1 b0t3 Abc1t4a0t3X8 c0t3 X9b1t4 XaX8t0Aat0 Xb X9t0 Abt0

�

28 / 36

SIFA Example: Inside a Masked S-box Circuit

The S-box output is correct
if � with c1 is correct and

both �s with b0, b1 are
correct: b0 = b1 = 0, or
both �s with b0, b1 are
faulty: b0 = b1 = 1

Either way, b = b0 ⊕ b1 = 0

If the cipher output is
correct, learn b = 0 (bias)

Use as before to recover the key!

a0 a1 b0 b1 c0 c1T0T1 T2 T3

r0 r1 s0 s1 t0 t1

A0 N0t0 c1t0 A1a1t0 b1t0A2 N0t1 c0t0 A3a1t1 b0t1X0 a0t0 X1c1t1X2X0t0A2t0 X3 X1t0 A3t0

A4 N1t0a1t2 A5b1t1 c1t2A6 N1t1a0t1 A7b1t2 c0t2X4 b0t2 X5a1t3 X6X4t0A6t0 X7 X5t0 A7t0
A8 N2t0 b1t3 A9c1t3a1t4Aa N2t1 b0t3 Abc1t4a0t3X8 c0t3 X9b1t4 XaX8t0Aat0 Xb X9t0 Abt0

�

29 / 36

SIFA Example: Application to AES

(a) Correct key guess (b) Wrong key guess

Figure: Results for bitsliced AES implementation on 32-bit platform (ARM Cortex M4)
with masking (1st order) and error detection (temporal redundancy). Simulated
byte-stuck-at-0 faults. Recovered distribution a�er S-box in round 9. [DEG+18]

30 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

p

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

AEAD,
noise, . . .

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

AEAD,
noise, . . .

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

AEAD,
noise, . . .

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

detection

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

AEAD,
noise, . . .

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

detection

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

AEAD,
noise, . . .

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

detection

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

masking

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Statistical (Ine�ective) Fault Attacks – Summary

EK
∆M

∆C

Kr

pbetter
crypto

Di�.
cryptanalysis

DC [BS90]

EK
M

�
∆C

Kr

AEAD,
noise, . . .

Di�. fault attack
DFA [BS97]

EK
M

∆C, C
� Kr

detection

Stat. fault attack
SFA [FJLT13;

DEK+16]

EK
M

C
� Kr

masking

Ine�. fault
attack

IFA [Cla07]

EK
M

∆C?

Kr

�
p

Statistical
Ine�ective Fault

Attack SIFA
[DEK+18;
DEG+18]

31 / 36

Defending against SIFA
�

SIFA Resistance

In a masked implementation, the gates are all incomplete operations: learning
all inputs of one gate is not su�icient to learn all shares of one variable.

SIFA on masked implementations works because the fault can
1. propagate to several nonlinear gates and then

2. disappear depending on the other inputs of all these gates.
This way, the e�ectivity of the fault can depend on all shares of a variable and
“reveal” this variable as a non-uniform distribution in the unmasked variables.

An implementation is single-fault SIFA-resistant if each possible single fault
is either detected by error detection

or activates (propagates to) at most one nonlinear gate.
32 / 36

SIFA Resistance

In a masked implementation, the gates are all incomplete operations: learning
all inputs of one gate is not su�icient to learn all shares of one variable.

SIFA on masked implementations works because the fault can
1. propagate to several nonlinear gates and then

2. disappear depending on the other inputs of all these gates.
This way, the e�ectivity of the fault can depend on all shares of a variable and
“reveal” this variable as a non-uniform distribution in the unmasked variables.

An implementation is single-fault SIFA-resistant if each possible single fault
is either detected by error detection

or activates (propagates to) at most one nonlinear gate.
32 / 36

Building SIFA-Resistant Implementations [DDE+20]

Two variants for error detection between 2 redundant computations:

Local checks: Compare relevant intermediate variables during computation

One approach: Analyze circuit graph to identify critical variables
Easier to develop, but may require many checks

Global checks: Compare only the final unmasked cipher output

Need to ensure that all relevant faults propagate to the output
One approach: Use only invertible gates like the To�oli gate
More elegant and flexible, but sometimes hard/impossible to develop

33 / 36

Building SIFA-Resistant Implementations [DDE+20]

Two variants for error detection between 2 redundant computations:

Local checks: Compare relevant intermediate variables during computation

One approach: Analyze circuit graph to identify critical variables
Easier to develop, but may require many checks

Global checks: Compare only the final unmasked cipher output

Need to ensure that all relevant faults propagate to the output
One approach: Use only invertible gates like the To�oli gate
More elegant and flexible, but sometimes hard/impossible to develop

33 / 36

Example: Single-fault SIFA-resistant χ3, 2 shares, local checks

a0 a1 b0 b1 c0 c1T0T1 T2 T3 Rr Rs Rt

r0 r1 s0 s1 t0 t1

Ë Ë Ë Ë Ë Ë

34 / 36

Example: Single-fault SIFA-resistant χ3, 2 shares, global checks

a0 a1 b0 b1 c0 c1T0T1 T2 T3 Rr Rs Rt

r0 r1 s0 s1 t0 t1

RsRrt2 Rtt2
A0 b0t4 c1t0 A1a1t0 b1t0A2 b0t0 c0t0 A3a1t1 b0t1R0 Rrt0R1 Rtt0X2
A0t0

A2t0 X3
A1t0

A3t0A4 c0t5a1t2 A5b1t1 c1t2A6 c0t1a0t1 A7b1t2 c0t2R4 Rst0R5
Rrt1X6

A4t0

A6t0 X7
A5t0

A7t0A8 a0t5 b1t3 A9c1t3a1t4Aa a0t2 b0t3 Abc1t4a0t3 R8 Rtt1R9
Rst1Xa

A8t0

Aat0 Xb
A9t0

Abt0X0a0t0 X1c1t1X4b0t2X5a1t3 X8c0t3X9b1t4

35 / 36

Conclusion

� Statistical Ine�ective Fault Attacks are a very powerful type of fault attacks

� E�ective against state-of-the-art countermeasures including
error detection and side-channel countermeasures (hiding, masking)

� New countermeasures needed

Proposal by Daemen et al. [DDE+20]: combine masking & detection
with special circuit structure (local checks and/or To�oli gates)
Several other approaches with varying e�ectivity and e�iciency have
been published

A With enough e�ort (money, time, data), attackers may be able to defeat
countermeasures – make sure this e�ort is higher than it’s worth!

36 / 36

Questions
ä

Bibliography I

[BS90] Eli Biham and Adi Shamir. Di�erential Cryptanalysis of DES-like Cryptosystems.
Advances in Cryptology – CRYPTO 1990. Vol. 537. LNCS. Springer, 1990, pp. 2–21.
DOI: 10.1007/3-540-38424-3_1.

[BS97] Eli Biham and Adi Shamir. Di�erential Fault Analysis of Secret Key
Cryptosystems. Advances in Cryptology – CRYPTO ’97. Vol. 1294. LNCS. Springer,
1997, pp. 513–525. DOI: 10.1007/BFb0052259.

[Cla07] Christophe Clavier. Secret External Encodings Do Not Prevent Transient Fault
Analysis. Cryptographic Hardware and Embedded Systems – CHES 2007. Vol. 4727.
LNCS. Springer, 2007, pp. 181–194. DOI: 10.1007/978-3-540-74735-2_13.

[DDE+20] Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß,
Florian Mendel, and Robert Primas. Protecting against Statistical Ine�ective Fault
Attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.3 (2020), pp. 508–543. DOI:
10.13154/tches.v2020.i3.508-543.

https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-74735-2_13
https://doi.org/10.13154/tches.v2020.i3.508-543

Bibliography II

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard,
Florian Mendel, and Robert Primas. Statistical Ine�ective Fault Attacks on Masked
AES with Fault Countermeasures. Advances in Cryptology – ASIACRYPT 2018.
Vol. 11273. LNCS. Springer, 2018, pp. 315–342. DOI:
10.1007/978-3-030-03329-3_11.

[DEK+16] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Victor Lomné, and
Florian Mendel. Statistical Fault Attacks on Nonce-Based Authenticated
Encryption Schemes. Advances in Cryptology – ASIACRYPT 2016. Vol. 10031. LNCS.
Springer, 2016, pp. 369–395. DOI: 10.1007/978-3-662-53887-6_14.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard,
Florian Mendel, and Robert Primas. SIFA: Exploiting Ine�ective Fault Inductions
on Symmetric Cryptography. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2018.3 (2018), pp. 547–572. DOI:
10.13154/tches.v2018.i3.547-572.

https://doi.org/10.1007/978-3-030-03329-3_11
https://doi.org/10.1007/978-3-662-53887-6_14
https://doi.org/10.13154/tches.v2018.i3.547-572

Bibliography III

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES – The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.
ISBN: 3-540-42580-2. DOI: 10.1007/978-3-662-04722-4.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault Attacks on
AES with Faulty Ciphertexts Only. Fault Diagnosis and Tolerance in Cryptography
– FDTC 2013. IEEE Computer Society, 2013, pp. 108–118. DOI:
10.1109/FDTC.2013.18.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A Di�erential Fault Attack Technique
against SPN Structures, with Application to the AES and KHAZAD. Cryptographic
Hardware and Embedded Systems – CHES 2003. Vol. 2779. LNCS. Springer, 2003,
pp. 77–88. DOI: 10.1007/978-3-540-45238-6_7.

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1109/FDTC.2013.18
https://doi.org/10.1007/978-3-540-45238-6_7

Bibliography IV

[TBM14] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Destroying
Fault Invariant with Randomization – A Countermeasure for AES Against
Di�erential Fault Attacks. Cryptographic Hardware and Embedded Systems –
CHES 2014. Vol. 8731. LNCS. Springer, 2014, pp. 93–111.

	Introduction to Fault Attacks
	
	Flipping Bits in Symmetric Crypto
	A Detour to Differential Cryptanalysis

	Countermeasures
	
	Error Detection & Infection
	Fault Attack Variants
	Side-Channel Countermeasures

	Statistical Ineffective Fault Attacks
	
	Why & how SIFA works
	SIFA against masked, redundant implementations

	Defending against SIFA
	
	Criterion for SIFA resistance
	A combined countermeasure

	Questions
	
	References

