
SIDE CHANNEL ANALYSIS
and the Gap Between Research and Practice

23 February 2021

Billy Brumley
billy.brumley AT tuni DOT fi
Network and Information Security Group (NISEC)
Tampere University, Tampere, FINLAND

default

Buzzword: Technical Debt
Technical debt is a concept in software development that reflects the implied
cost of additional rework caused by choosing an easy (limited) solution now
instead of using a better approach that would take longer. Technical debt can
be compared to monetary debt. If technical debt is not repaid, it can accumu-
late ’interest’, making it harder to implement changes later on.

–Wikipedia

–Agile Pearls
2 / 29

default

Elliptic curve cryptography (ECC) and ECDSA

Legacy curves over prime fields

E (Fp) : y
2 = x3 + ax + b

ECDSA
#〈G 〉 = n prime, private key 0 < d < n, public key [d]G , nonce 0 < k < n:

r = ([k]G)x mod n

s = (h(m) + dr)k−1 mod n

3 / 29

default

Lattices

The problem
Assume j equations of the form

mi − siki + dri ≡ 0 (mod n)

so j equations and j + 1 unknowns. What if we know part of each of j of the
unknowns?

Howgrave-Graham and Smart (1999)
“Lattice Attacks on Digital Signature Schemes”

The solution
Here we’ve filtered signatures that suggest a “small” ki . Use lattice methods to
produce a “small” solution. There’s a good chance it might be the right one.

4 / 29

default

Lattice attack: intuition
1 1?????... ---- AVERAGE SOLUTION
2 1?????... n 111111...
3 1?????...
4 1?????...
5 1?????...
6 1?????...
7 1?????...
8 1?????... 1/2
9 1?????...
10 1?????...
11 1?????...
12 1?????...
13 1?????...
14 1?????...
15 1?????...
16 1?????... ----
17 01????...
18 01????...
19 01????...
20 01????... 1/4
21 01????...
22 01????...
23 01????...
24 01????... ----
25 001???...
26 001???... 1/8
27 001???...
28 001???... ----
29 0001??... 1/16
30 0001??... ----
31 00001?... 1/32

1 00000?... ---- OUR SOLUTION
2 00000?... n 111111...
3 00000?...
4 00000?...
5 00000?...
6 00000?...
7 00000?...
8 00000?...
9 00000?...

10 00000?...
11 00000?...
12 00000?...
13 00000?...
14 00000?...
15 00000?...
16 00000?...
17 00000?...
18 00000?...
19 00000?...
20 00000?...
21 00000?...
22 00000?...
23 00000?...
24 00000?...
25 00000?...
26 00000?...
27 00000?...
28 00000?...
29 00000?...
30 00000?...
31 00000?...

5 / 29

default

Lattice attack: intuition
1 1?????... ---- AVERAGE SOLUTION
2 1?????... n 111111...
3 1?????...
4 1?????...
5 1?????...
6 1?????...
7 1?????...
8 1?????... 1/2
9 1?????...
10 1?????...
11 1?????...
12 1?????...
13 1?????...
14 1?????...
15 1?????...
16 1?????... ----
17 01????...
18 01????...
19 01????...
20 01????... 1/4
21 01????...
22 01????...
23 01????...
24 01????... ----
25 001???...
26 001???... 1/8
27 001???...
28 001???... ----
29 0001??... 1/16
30 0001??... ----
31 00001?... 1/32

1 00000?... ---- OUR SOLUTION
2 00000?... n 111111...
3 00000?...
4 00000?...
5 00000?...
6 00000?...
7 00000?...
8 00000?...
9 00000?...

10 00000?...
11 00000?...
12 00000?...
13 00000?...
14 00000?...
15 00000?...
16 00000?...
17 00000?...
18 00000?...
19 00000?...
20 00000?...
21 00000?...
22 00000?...
23 00000?...
24 00000?...
25 00000?...
26 00000?...
27 00000?...
28 00000?...
29 00000?...
30 00000?...
31 00000?...

5 / 29

default

Lattice attacks for applied cryptographers

6 / 29

default

OpenSSL: 1998–now

OpenSSL is a software library for applications that secure communications over
computer networks against eavesdropping or need to identify the party at the
other end. It is widely used by Internet servers, including the majority of HTTPS
websites. OpenSSL contains an open-source implementation of the SSL and
TLS protocols. The core library, written in the C programming language, im-
plements basic cryptographic functions and provides various utility func-
tions.

–Wikipedia
Let’s Encrypt is the most popular authority with 58.2% of all issued certificates.

–Censys (2019)

7 / 29

default

RSA: remote timing attack, decryption
OpenSSL CVE-2003-0147 (USENIX 2003)

Remote Timing Attacks are Practical

David Brumley Dan Boneh
Stanford University Stanford University

dbrumley@cs.stanford.edu dabo@cs.stanford.edu

Abstract

Timing attacks are usually used to attack weak comput-
ing devices such as smartcards. We show that timing
attacks apply to general software systems. Specifically,
we devise a timing attack against OpenSSL. Our exper-
iments show that we can extract private keys from an
OpenSSL-based web server running on a machine in the
local network. Our results demonstrate that timing at-
tacks against network servers are practical and therefore
security systems should defend against them.

1 Introduction

Timing attacks enable an attacker to extract secrets
maintained in a security system by observing the time
it takes the system to respond to various queries. For
example, Kocher [10] designed a timing attack to ex-
pose secret keys used for RSA decryption. Until now,
these attacks were only applied in the context of hard-
ware security tokens such as smartcards [4, 10, 18]. It
is generally believed that timing attacks cannot be used
to attack general purpose servers, such as web servers,
since decryption times are masked by many concurrent
processes running on the system. It is also believed that
common implementations of RSA (using Chinese Re-
mainder and Montgomery reductions) are not vulnerable
to timing attacks.

We challenge both assumptions by developing a remote
timing attack against OpenSSL [15], an SSL library
commonly used in web servers and other SSL applica-
tions. Our attack client measures the time an OpenSSL
server takes to respond to decryption queries. The client
is able to extract the private key stored on the server. The
attack applies in several environments.

Network. We successfully mounted our timing attack
between two machines on our campus network.

The attacking machine and the server were in
different buildings with three routers and multi-
ple switches between them. With this setup we
were able to extract the SSL private key from
common SSL applications such as a web server
(Apache+mod SSL) and a SSL-tunnel.

Interprocess. We successfully mounted the attack be-
tween two processes running on the same machine.
A hosting center that hosts two domains on the
same machine might give management access to
the admins of each domain. Since both domain are
hosted on the same machine, one admin could use
the attack to extract the secret key belonging to the
other domain.

Virtual Machines. A Virtual Machine Monitor (VMM)
is often used to enforce isolation between two Vir-
tual Machines (VM) running on the same proces-
sor. One could protect an RSA private key by stor-
ing it in one VM and enabling other VM’s to make
decryption queries. For example, a web server
could run in one VM while the private key is stored
in a separate VM. This is a natural way of protect-
ing secret keys since a break-in into the web server
VM does not expose the private key. Our results
show that when using OpenSSL the network server
VM can extract the RSA private key from the se-
cure VM, thus invalidating the isolation provided
by the VMM. This is especially relevant to VMM
projects such as Microsoft’s NGSCB architecture
(formerly Palladium). We also note that NGSCB
enables an application to ask the VMM (aka Nexus)
to decrypt (aka unseal) application data. The appli-
cation could expose the VMM’s secret key by mea-
suring the time the VMM takes to respond to such
requests.

Many crypto libraries completely ignore the timing at-
tack and have no defenses implemented to prevent it. For
example, libgcrypt [14] (used in GNUTLS and GPG)
and Cryptlib [5] do not defend against timing attacks.
OpenSSL 0.9.7 implements a defense against the tim-
ing attack as an option. However, common applications
such as mod SSL, the Apache SSL module, do not en-

8 / 29

default

RSA: L1 dcache attack, decryption
OpenSSL CVE-2005-0109 (BSDCan 2004)

CACHE MISSING FOR FUN AND PROFIT

COLIN PERCIVAL

Abstract. We describe the construction of a channel between
processes via the state of a shared memory cache, and its use in the
cryptanalysis of RSA. Unlike earlier side-channel attacks involving
memory caches, our attack has the remarkable property of only
requiring that a single private key operation be observed.

We also discuss other methods in which this channel might be
abused, and provide some suggestions to processor designers, op-
erating system vendors, and the authors of cryptographic software
as to how this and related attacks could be mitigated or eliminated
entirely.

1. Introduction

As integrated circuit fabrication technologies have improved over the
past few decades, improvements in processor performance have vastly
outpaced those in memory latency; while accessing a random location
in RAM might have taken a few processor cycles two decades ago, it can
now easily take several hundred cycles. The answer to this processor-
memory performance gap has been to add caches: By relying upon the
principles of temporal and spatial locality, it has been possible to keep
the average cost of a memory access reasonably constant relative to the
cost of arithmetic operations, even though the worst case has degraded
significantly.

The improvement in average performance due to caches comes at the
expense of a vastly increased variability in performance. This has been
known for many years to cause problems in the design of safety-critical
“real time” systems where it is imperative that a series of deadlines
be satisfied even as the presence of caches makes it very difficult to
determine the worst-case performance [15]. More recently, it has been
shown that the presence of caches and the resulting timing variability
makes possible a number of cryptanalytic side channel attacks [1, 14,
17].

Key words and phrases. Cryptography, RSA, side channels, simultaneous multi-
threading, caching.

9 / 29

default

Countermeasure: “constant time” exponentiation flag

if (bits == 0)
@@ -364,6 +379,11 @@ int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,

BIGNUM *val[TABLE_SIZE];
BN_MONT_CTX *mont=NULL;

+ if (BN_get_flags(p, BN_FLG_EXP_CONSTTIME) != 0)
+ {
+ return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
+ }
+

10 / 29

default

RSA: multiple vulnerabilities
OpenSSL 2007 (IMACC 2007)

New Branch Prediction Vulnerabilities in OpenSSL
and

Necessary Software Countermeasures

Onur Acıiçmez1, Shay Gueron2,3, and Jean-Pierre Seifert1,4

1 Samsung Information Systems America, San Jose, 95134, USA
2 Department of Mathematics, University of Haifa, Haifa, 31905, Israel

3 Intel Corporation, IDC, Israel
4 Institute for Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

onur.aciicmez@gmail.com, shay@math.haifa.ac.il,
jeanpierreseifert@yahoo.com

Abstract. Software based side-channel attacks allow an unprivileged spy process
to extract secret information from a victim (cryptosystem) process by exploiting
some indirect leakage of “side-channel” information. It has been realized that
some components of modern computer microarchitectures leak certain side-
channel information and can create unforeseen security risks. An example of such
MicroArchitectural Side-Channel Analysis is the Cache Attack — a group of
attacks that exploit information leaks from cache latencies [4,7,13,15,18]. Public
awareness of Cache Attack vulnerabilities lead software writers of OpenSSL
(version 0.9.8a and subsequent versions) to incorporate countermeasures for
preventing these attacks. In this paper, we present a new and yet unforeseen side
channel attack that is enabled by the recently published Simple Branch Predic-
tion Analysis (SBPA) which is another type of MicroArchitectural Analysis,
cf. [2,3]. We show that modular inversion — a critical primitive in public key
cryptography — is a natural target of SBPA attacks because it typically uses the
Binary Extended Euclidean algorithm whose nature is an input-centric sequence
of conditional branches. Our results show that SBPA can be used to extract secret
parameters during the execution of the Binary Extended Euclidean algorithm.
This poses a new potential risk to crypto-applications such as OpenSSL, which
already employs Cache Attack countermeasures. Thus, it is necessary to develop
new software mitigation techniques for BPA and incorporate them with cache
analysis countermeasures in security applications. To mitigate this new risk in
full generality, we apply a security-aware algorithm design methodology and
propose some changes to the CRT-RSA algorithm flow. These changes either
avoid some of the steps that require modular inversion, or remove the critical
information leak from this procedure. In addition, we also show by example
that, independently of the required changes in the algorithms, careful software
analysis is also required in order to assure that the software implementation does
not inadvertently introduce branches that may expose the application to SBPA
attacks. These offer several simple ways for modifying OpenSSL in order to
mitigate Branch Prediction Attacks.

Keywords: Side channel attacks, branch prediction attacks, cache eviction at-
tacks, Binary Extended Euclidean Algorithm, modular inversion, software miti-
gation methods, OpenSSL, RSA, CRT.

S.D. Galbraith (Eds.): Cryptography and Coding 2007, LNCS 4887, pp. 185–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

11 / 29

default

Countermeasure: “constant time” flag, “no branch“ inversion

@@ -210,6 +210,11 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
BIGNUM *ret=NULL;
int sign;

+ if (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)
+ {
+ return BN_mod_inverse_no_branch(in, a, n, ctx);
+ }
+

12 / 29

default

ECDSA: L1 dcache attack, point multiplication
OpenSSL 2009 (Asiacrypt 2009)

Time

 0

 16

 32

C
a

c
h

e
 S

e
t

 130

 140

 150

 160

 170

 180

 190

 200

13 / 29

default

DSA: L1 icache attack, exponentiation
OpenSSL 2010 (CHES 2010)

Time
 0

 8

 16

C
ac

he
 S

et

 30

 60

 90

 120

14 / 29

default

ECDSA remote timing attack, point multiplication
OpenSSL CVE-2011-1945 (ESORICS 2011)

 0

 0.2

 0.4

 0.6

 0.8

 1

1.95 2.00 2.05 2.10 2.15 2.20

C
u
m

u
la

ti
v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

≥ 160 bits
159 bits
158 bits
157 bits
156 bits
155 bits
154 bits
153 bits

≤ 152 bits

15 / 29

default

ECDH remote bug attack
OpenSSL CVE-2011-4354 (CT-RSA 2012)

16 / 29

default

ECDSA Flush+Reload attack, point multiplication
OpenSSL 2014 (CHES 2014)

“Ooh Aah... Just a Little Bit” : A Small Amount of Side
Channel Can Go a Long Way

Naomi Benger1, Joop van de Pol2, Nigel P. Smart2, and Yuval Yarom1

1 School of Computer Science, The University of Adelaide, Australia
mail.for.minnie@gmail.com, yval@cs.adelaide.edu.au

2 Dept. Computer Science, University of Bristol, United Kingdom
joop.vandepol@bristol.ac.uk, nigel@cs.bris.ac.uk

Abstract. We apply the FLUSH+RELOAD side-channel attack based on cache
hits/misses to extract a small amount of data from OpenSSL ECDSA signature
requests. We then apply a “standard” lattice technique to extract the private key,
but unlike previous attacks we are able to make use of the side-channel informa-
tion from almost all of the observed executions. This means we obtain private
key recovery by observing a relatively small number of executions, and by ex-
pending a relatively small amount of post-processing via lattice reduction. We
demonstrate our analysis via experiments using the curve secp256k1 used in the
Bitcoin protocol. In particular we show that with as little as 200 signatures we
are able to achieve a reasonable level of success in recovering the secret key for
a 256-bit curve. This is significantly better than prior methods of applying lattice
reduction techniques to similar side channel information.

1 Introduction

One important task of cryptographic research is to analyze cryptographic implementa-
tions for potential security flaws. This aspect has a long tradition, and the most well
known of this line of research has been the understanding of side-channels obtained
by power analysis, which followed from the initial work of Kocher and others [22].
More recently work in this area has shifted to looking at side-channels in software im-
plementations, the most successful of which has been the exploitation of cache-timing
attacks, introduced in 2002 [32]. In this work we examine the use of spy-processes on
the OpenSSL implementation of the ECDSA algorithm.

OpenSSL [31] is an open source tool kit for the implementation of cryptographic
protocols. The library of functions, implemented using C, is often used for the imple-
mentation of Secure Sockets Layer and Transport Layer Security protocols and has also
been used to implement OpenPGP and other cryptographic standards. The library in-
cludes cryptographic functions for use in Elliptic Curve Cryptography (ECC), and in
particular ECDSA. In particular we will examine the application of the FLUSH+RE-
LOAD attack, first proposed by Yarom and Falkner [40], then adapted to the case of
OpenSSL’s implementation of ECDSA over binary fields by Yarom and Benger [39],
running on X86 processor architecture. We exploit a property of the Intel implementa-
tion of the X86 and X86 64 processor architectures using the FLUSH+RELOAD cache
side-channel attack [39, 40] to partially recover the ephemeral key used in ECDSA.

L. Batina and M. Robshaw (Eds.): CHES 2014, LNCS 8731, pp. 75–92, 2014.
c© International Association for Cryptologic Research 2014

17 / 29

default

DSA Flush+Reload attack, exponentiation
OpenSSL CVE-2016-2178 (CCS 2016)

 100

 200

 300

 0 2000 4000 6000 8000 10000 12000

L
at

en
cy

Time

multiply probe
square probe

18 / 29

default

ECDSA Flush+Reload attack, inversion
OpenSSL CVE-2016-7056 (USENIX 2017)

 100

 200

 10 20 30 40 50 60

L
at

en
cy

Time

L probe
S probe

19 / 29

default

RSA keygen Flush+Reload attack: multiple vulnerabilities
OpenSSL CVE-2018-0737 (TCHES 2019)226 Cache-Timing Attacks on RSA Key Generation

T
ra

ce

L
at

en
cy

 (
fi

lt
er

ed
)

T
em

p
la

te

L
at

en
cy

 (
fi

lt
er

ed
)

-0.4

-0.2

 0

 0.2

 0.4

 0 50000 100000 150000 200000 250000

C
o

rr
e
la

ti
o

n

 100

 200

 300

 284400 284500 284600 284700 284800 284900 285000 285100 285200 285300

T
ra

ce
,
L

at
en

cy

Time (samples)

subtraction probe
shift probe

Figure 4: Visualization of the moving Pearson correlation in action. From top to bottom:
filtered trace, aligned template trace, Pearson correlation, and raw trace (zoomed).

processes and microarchitecture components. To overcome this, Section 4 details an error
correction algorithm developed to find potential correct LS sequence candidates that later
are converted to bits and used as input values to perform the lattice attack explained
in Section 5.

4 Error Correction in noisy LS Sequences
In order to design an algorithm for correcting the errors in an LS sequence, we characterize
the nature of them. As discussed in Section 3.3, cache-timing attacks like Flush+Re-
load provide noisy data due to variances in the execution environment, interruptions,
preemptions, task scheduling, etc. Therefore LS sequence extraction from the raw traces
is not error free and contains errors with overwhelming probability.

After analyzing many of the traces with known inputs, we identified the following
classes of errors: (1) Wrong number of ‘L’ symbols between two ‘S’ symbols (due to Zi

estimation error). (2) Missing ‘S’ symbols (less frequent). (3) Extra ‘S’ symbols (much
less frequent). (4) Victim preemption: observed as a small gap (i.e. window of cache
misses) in the middle of operations but fixable by removing this window during trace
processing. (5) Spy preemptions: observed as a hole in the trace exhibited by the timing
information from the Flush+Reload attack. They are detectable but unfortunately
operations during the preemption window are completely lost.

4.1 Leakage Data: Error Modeling
From the Flush+Reload attack, we obtain pairs (Zp

i , Zq
i) for p and q respectively. With

this information, we obtain two recovery equations according to (2), where wlog. n1 and
n2 are greater than some n. Thus, we have sufficient (noisy) Zi for both primes to recover

20 / 29

default

TriggerFlow: Continuous Integration for execution paths
DIMVA 2018

Status Pipeline Commit Stages

 00:07:42
 1 hour ago

 00:07:52
 1 hour ago

 00:07:46
 1 hour ago

 passed

patched/mas… f3b5c690
[master:c8147d37ccaaf28c…

 passed #1494 by
 patched/mas… 81d96fbd

[master:fe16ae5f95fa86ddb…

 passed #1493 by
 patched/mas… 9fb8e7df

[master:0b76ce99aaa5678b…

#1495 by
latest

21 / 29

default

SM2: multiple vulnerabilities
OpenSSL 2018 (ACSAC 2018)

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

L
at

en
cy

 (
cy

cl
es

)

Time (samples)

shift probe subtract probe

22 / 29

default

ECDSA: port contention attack, scalar multiplication
OpenSSL CVE-2018-5407 (Oakland 2019)

[39, Sec. 3.2]. Although this implementation has been repeat-
edly targeted for side-channel vulnerabilities [36, 40–42], it
has never been exploited in the context of P-384 in OpenSSL.

During ECDSA signature generation, OpenSSL calls
ecdsa_sign_setup @ crypto/ec/ecdsa_ossl.c to
perform steps 1 and 2 of the ECDSA algorithm described
above. For the latter, the underlying ec_wNAF_mul func-
tion gets called to perform the scalar multiplication, where
r = [k]G is the relevant computation for this work. That
function first transforms the scalar k to its wNAF representa-
tion and then, based on this representation, the actual scalar
multiplication algorithm executes a series of double and add
operations. To perform double and add operations, OpenSSL
calls ec_GFp_simple_dbl and ec_GFp_simple_add
respectively. There, these methods have several function calls
to simpler and lower level Montgomery arithmetic, e.g., shift,
add, subtract, multiply, and square operations. A single ECC
double (or add) operation performs several calls to these
arithmetic functions. Among the strategies mentioned in Sec-
tion IV, we found that for our target the P5 strategy results
in the cleanest trace overall.

In summary, by using the PORTSMASH technique during
OpenSSL P-384 ECDSA signature generation, we can measure
the timing variations due to port contention. More specifically,
we capture the port contention delay during double and add
operations, resulting in an accurate raw signal trace containing
the sequence of operations during scalar multiplication, and
leaking enough LSDs of multiple nonces k to later succeed in
our key recovery phase.

B. Procurement Phase: TLS

Stunnel3 provides TLS/SSL tunneling services to servers
(and clients) that do not speak TLS natively; during the
procurement phase we used stunnel 5.49 as the TLS server. We
compiled it from source and linked it against OpenSSL 1.1.0h
for crypto functionality. Our setup consists of an Intel Core i7-
6700 Skylake 3.40GHz featuring Hyper-Threading, with four
cores and eight threads, running Ubuntu 18.04 LTS “Bionic
Beaver”. In addition, we disabled TurboBoost to minimize any
interference due to CPU frequency scaling. Nonetheless, we
hypothesize enabling it would merely introduce some clock
skew without substantially affecting the side-channel leakage
itself. Scalar multiplication is a demanding task, so Turbo-
Boost should already activate during execution and quickly
reach the maximum stable frequency. This would have little
impact on our results since we are more interested in the
trailing portion of the trace. This decision is consistent with
existing results in the literature, e.g. [16, 36, 41, 43].

We configured the stunnel server with a P-384 ECDSA
certificate and ECDHE-ECDSA-AES128-SHA256 as the
TLS 1.2 cipher suite. We wrote a custom TLS client to
connect to our TLS server. Typically, during a TLS hand-
shake, the client and the server exchange several protocol
messages, including ClientHello, ServerHello, and

3https://www.stunnel.org

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

ECDH ECDSA (below)

L
at

en
cy

 100

 150

 200

 250

 35000 36000 37000 38000 39000 40000

L
at

en
cy

Time

Latency Filtered

Fig. 6. Multiple TLS trace stages. Top: Raw TLS handshake trace showing
scalar multiplications during ECDH and ECDSA. Bottom: Zoom at the end
of the previous ECDSA trace, peaks (filtered) represent add operations. For
example, this trace ends with an add operation, indicating the nonce is odd.

ServerKeyExchange parameters. These messages are con-
catenated, hashed, and digitally signed by the server. Then, the
client verifies the signature before finally establishing a session
with the server.

Our custom TLS client, acting as an attacker, serves two
purposes: (1) it controls the start of the attack by initiating
a TLS handshake with the stunnel service, alerting the Spy
process to start capturing OpenSSL scalar multiplication op-
erations performed by the server during the handshake; and
(2) it collects protocol messages and digital signatures during
the TLS handshake. Figure 6 (Top) shows a trace captured
by the Spy process, containing the two scalar multiplication
operations during TLS handshake, i.e. ECDH and ECDSA
respectively.

The client drops the handshake as soon as the server
presents the digital signature; since we are only interested in
capturing up to the digital signature generation, this allows us
to capture a trace in roughly 4 ms (∼12.5 million clock cycles).
Additionally, our client concatenates the protocol messages,
hashes the resulting concatenation, and stores the message
digest. Similarly, it stores the respective DER-encoded P-384
ECDSA signatures for each TLS handshake. This process is
repeated as needed to build a set of traces, digest messages,
and digital signatures that our lattice attack uses later in the
key recovery phase.

Once the data tuples are captured, we proceed to the signal
processing phase, where the traces are trimmed and filtered
to reduce the noise and output useful information. Figure 6
(Bottom) shows a zoom at the end of the (Top) trace, where
the filters reveal peaks representing add operations, separated
by several double operations.

At a high level—returning to the discussion in Section IV—
the reason our signal modulates is as follows. The wNAF
algorithm executes a (secret) sequence of double and add
operations. In turn, these operations are sequences of finite

23 / 29

default

ECDSA: remote timing attack, scalar multiplication
OpenSSL CVE-2019-1547 (USENIX 2020)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5.40 5.45 5.50 5.55 5.60 5.65 5.70

T
h

re
sh

o
ld

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (CPU cycles, millions)

≤ 252
253
254
255
256

24 / 29

default

DSA: remote timing attack, exponentiation
NSS CVE-2020-12399 (CCS 2020)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 122 123 124 125 126 127 128 129 130 131

C
u

m
u

la
ti

v
e

p
ro

b
ab

il
it

y

Time (ms)

209-212
213-216
217-220
221-224

25 / 29

default

DH: Flush+Reload attack, padding
OpenSSL 2021 (arXiv:2101.01077 2021)

 100

 150

 200

 250

L
at

en
cy

 (
cl

o
ck

 c
y
cl

es
)

NoDegrade 0-1
NoDegrade 0-0

Degrade 0-1
Degrade 0-0

HyperDegrade 0-1
HyperDegrade 0-0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000 25000

sq
rt

(N
IC

V
)

Time (samples)

NoDegrade Degrade HyperDegrade

26 / 29

default

Lessons Learned

I Stop gap countermeasures bite you in the end.
I Breaking things isn’t enough. Fix things.
I Deployed libraries are not your research playground.
I Stop looking at crypto in a vacuum.
I OpenSSL is very different pre-HeartBleed vs post. (contributions, policies)

27 / 29

default

Contributing to OpenSSL

I PRs welcome: we will help you.
I Disclosure: show them your data.
I New OpenSSL security policy: the good, bad, ugly
I OpenSSL 3.0 architecture changes

28 / 29

default

Future Work

I More TriggerFlow unit tests
I Many ubiquitous crypto libs have similar design patterns—what about them?
I Re-design OpenSSL EC module
I More OpenSSL engines

29 / 29

