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DIFFERENTIAL ATTACKS

The concept of profiling was initially mentioned in the “Differential Power Analysis”
paper by Kotcher et al.

You know by now that they proposed a very generic attack approach: using a simple t-test
and a 0/1 power model.

A simple 0/1 power model has the advantage that you don’t make many assumptions about
the actual leakage behaviour of a device.

Go to https://answergarden.ch/1762609 to submit your responses.

What assumptions about the device leakage do you make with a 0/1 power model?
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DIFFERENTIAL ATTACKS: RECAP

The adversary captures observations
L + r and produces input and key
guess dependent model predictions
M.

Using a statistical function (a
distinguisher), the adversary
decides, which key dependent
model prediction “fits” better with
the observations, thereby assigning
a “score” to each key guess.

Model M(X, k)
k ∈ K

Device L(S) + R
X, k∗ ⊂ S

D(L(S) + R,M(X, k))

XX

D = {D(L + R,M(X, k = 0)),D(L + R,M(X, k =

1)), ...,D(L + R,M(X, k = m))}; r ∈ R ∼ N (0, 1)

The key guess with the highest score is likely to correspond to the true key value k∗.
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DIFFERENTIAL ATTACKS, LEAKAGE MODEL
With a 0/1 power model we make the assumption that the leakage of a device depends at
least on the leakage of a single bit, i.e.

L(S) = βisi + L′(S),

with βi ∈ R, L′(S) excluding the term βisi.
(The adversary choose a bit of the state, the bit is denoted by si, and they can give a weight
to it, this is called βi. In the Kocher et al. paper, βi = 1.)

The “leakage model" thus in the Kocher attack is:

M(X) = si.

(X denotes the target value, which is a function of parts of the input and the key. X is
contained within S: X ⊂ S).

This rather generic leakage model is a poor approximation of the actual leakage.
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DIFFERENTIAL ATTACKS, LEAKAGE MODEL

Submit your answers at https://answergarden.ch/1762614

The purpose of profiling is to derive a leakage model that:
I is better for attacks (submit A)
I explains most of the device leakage (submit B)
I fits with a proof for an implementation (submit C)
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PROFILING IN CONTEXT OF DIFFERENT PURPOSES

Attacks: we seek to find a model that enables us to accurately predict the target
device’s leakage for a specific intermediate state, with the aim to minimise
the number of leakage observations that are necessary to significantly reduce
the rank of a subkey (and therefore overall key).

Simulators: we seek to find models that enable us to accurately predict the target device’s
leakage for arbitrary states, with the aim to enable accurate relative
assessments of the leakage of different code sequences and with the aim of
helping to explain leakage sources in code.

Proofs: we seek to validate proof assumptions by finding models that explain the
sources of leakage with the aim of checking that certain proof assumptions
are valid for a device.
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QUALITIES OF MODELS IN RELATION TO USE FOR ALL/MANY/ONE

DEVICE(S) OF A TYPE
Clearly different applications of profiling indicate that models can have/should have
different qualities:

Generic: a model that is used in a proof needs to apply to all devices of the same
“type”, thus it won’t (or shouldn’t) capture manufacturing or
integration/setup specific features. It should capture architecture specific
features.

Portable: a model that is used for attacks on different devices of the same “type”
should capture enough device specifics that it improves attack efficiency, but
it must not be too specific to the devices/setup that it was derived from
because then it would not be portable to other devices of the same type.

Specific: a model that is used only on one device to illustrate the “worst case
adversary” should be highly specific too that device on the expense that it is
likely to fail (or not lead to the same best results) on other devices of the
same type.
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CLASSIFYING MODELS ACCORDING TO STEVEN’S LEVELS OF

MEASUREMENTS
Direct approximation M ≈ L (c.f. the ‘ratio scale’), e.g. Bayesian templates and

stochastic models.
Proportional approximation M ≈ αL (c.f. the ‘interval scale’), e.g. via linear regression

(stochastic models withou the variance estimation), weighted Hamming
weight; suitable for use in correlation DPA

Ordinal approximation {z|M(z) < M(z′)} ≈ {z|L(z) < L(z′)} ∀z′ ∈ Z (c.f. the
‘ordinal scale’); e.g. HW, or derived via (un)supervised learning (e.g. cluster
analysis); suitable for use with (e.g.) Spearman’s rank correlation
coefficient.

Nominal approximation {z|M(z) = M(z′)} ≈ {z|L(z) = L(z′)} ∀z′ ∈ Z (c.f. the
‘nominal scale’); e.g. 0/1, “generic models” like the identity model, other
clustering based approaches, can be used e.g. with ‘partition-based’
distinguishers of Standaert et al. (ISISC ’08), and Mutual Information,
Kolmogorov-Smirnov.
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TYPES OF MODELS VS USE CASES

Type Proof Simulation Attack (portable) Attack (worst case)
Direct o

Proportional o
Ordinal o o

Nominal o o o
Explanatory power Predictive Power

Any model that offers a proportional or direct approximation of the leakage is particularly
good for attacks: it can predict “new” leakages well.

Any model that offers an ordinal or nominal approximation of the leakage relates
particularly well to proofs and is good for simulations: it can explain the leakage well.

Simulation models arguably should strike a balance between their predictive power and
their explanatory power.
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JUDGING MODEL QUALITY

We need to define what we are after:

Predictive power: important for attacks, in particular if we want to demonstrate a “worst
case adversary”, we need to judge how “close” model predictions are to
“new observations”: R2, cross validation, key rank

Explanatory power: important for simulations and proofs, we need to judge how much of
the leakage our model can predict: F−test

Data complexity requirements: important for estimation accuracy; the amount of data
implicates how complex a model can be.

Typically one trades off one property for the other: I know of no method that would lead to
a model that can achieve very high explanatory power AND predictive power
simultaneously.
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QUIZ TIME ...

Question 1

When designing a profiled attack on a device for which you have an identical one (in
the same test harness) available for profiling you would consider using:

1. a proportional model

2. an ordinal model

3. the Identity function as a model

4. a weighted Hamming weight as a model

5. a model that explains the power consumption very well

(Select all answers that you believe to be correct.)
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QUIZ TIME ...

Question 2

A predictive model

1. is a proportional approximation of the device leakage function

2. is good at helping pinpoint the sources of the leakage

3. is bad for simulations

4. is able to predict the validity of proofs for a device

5. is device specific

(Select all answers that you believe to be correct.)
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QUIZ TIME ...

Question 3

A model that is meant for a target device that has the same architecture as the profil-
ing device should

1. be portable

2. be a direct approximation of the profiling device’s leakage function

3. be based on a nominal model

4. consider trading of genericity and explanatory power

5. be useable with a distinguisher such as correlation

(Select all answers that you believe to be correct.)
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PREDICTIVE MODELLING

The goal is to derive proportional or direct models: we aim to be as close to the observed
power consumption as possible.

With a fixed/limited amount of training data.

The training data comes with labels: we have full control over the training device, i.e.
inputs, key, and any randomness. This is also called supervised learning.
(Perhaps in practice this implies doing a sucessfull unprofiled DPA attack first, perhaps this implies faulting the randomness generation process, perhaps this implies

some degree of reverse engineering.)

In a Common Criteria based security evaluation scheme, this form of profiling is always
attempted. In FIPS 140-3 this is out of scope.
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CLASSICAL APPROACHES TO PREDICTIVE MODELLING

I will stick to the parametric setting, and Gaussian assumption.

‘Classical’ templates (with/without noise estimation):
I Separate (multivariate) Gaussian models for each key-dependent value
I Covariance matrix estimated for each key-dependent value

Linear regression-based templates (with/without noise estimation):
I Linear regression model fitted to the pooled data at each time point
I Covariance matrix estimated for pooled data (2nd, independent sample)

For both approaches it is possible to estimate the mean and variance for trace points
independently. Any dependencies are then captured via the covariance matrix.

Profiles that do not incorporate any covariance information or even variance information
are called “reduced templates” in the DPA book nomenclatura.
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ML/DL APPROACHES TO PREDICTIVE MODELLING

Using templates to update priors is also a classical ML technique: (naive) Bayes. (“Naive”
implies that the trace points are assumed to be independent. )

Many techniques exist, but approaches such as clustering (supervised or not) do not create
proportional or direct approximations of the data: they create ordinal and nominal
approximations. Thus they are useful for creating profiles if e.g. the device is too complex
(and classical approaches lead to poor results) or if portability is of importance.

DL techniques such as MLPs or CNNs have proven to be useful in the context of predictive
modelling. In particular CNNs (these are, roughly speaking, MLPs with a preceeding
convolution layer) deal with misaligned traces with little user intervention.
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“CLASSICAL TEMPLATES”

Yx =L + r= {Yt|X = x}T
t=1 is the random vector representing the leakage over time given

that the associated intermediate target takes the value x ∈ X, and X ⊂ S.

The assumption is that the observed leakage Y follows a normal distribution:
Yx ∼ N (µv,Σv).

The model M is fitted by finding the T × 1 sample mean µ̂x and the T × T sample
covariance Σ̂x from Nx measurements {yx,n}Nx

n=1 observed on the profiling device.

Templates can be built for pairs of input and key, or target function values (these strategies
are equivalent iff the target function satisfies the “equal images under differen subkeys”
(EIS) property).
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LINEAR REGRESSION BASED TEMPLATES

The approach proposed by Schindler et al. is to fit a linear regression model to the pooled
data at each point in time: Yt =

∑p
j=0 βj,tgj(X) + r.

{g0, . . . , gp} are p + 1 functions of the intermediate value which form the covariate set
(the elements in this set are also called the “explanatory variables” for the model).

In practice, g0 is usually a constant (i.e. 1) and the remaining gj are monomials of the form∏
i∈I v[i] where v[i] denotes the ith bit of v and I ⊂ {1, . . . ,m} (with m the number of bits

needed to represent V in binary), so that the model specification is of the form of a
polynomial in function of the bits of the intermediate value, e.g. for a 2-bit value of X we
have the form Y = β0 + β1x0 + β2x1 + β3x0x1 + r.
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LINEAR REGRESSION BASED TEMPLATES

Ordinary Least Squares (OLS) is used to obtain the coefficients β̂j,t and subsequently the
model fitted values Ŷt =

∑p
j=0 β̂j,tgj(V).

If all the influential terms are included in the model, the fitted values coincide
asymptotically with the conditional means obtained via ‘classical’ templating (Ŷ = µv).

The noise profiling stage consists of estimating a single (pooled) covariance matrix Σ̂ from
the model residuals observed in a second independent sample.
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LINEAR REGRESSION VS. CLASSICAL

I Classical templates have fixed complexity: 2m conditional mean vectors, 2m

covariance matrices.
I Linear regression has adjustable complexity: an intercept, coefficients on all the

equation terms, and one covariance matrix.
I Potentially large reduction in profiling traces needed (e.g. linear model expression

requires only m + 1 coefficients).
I Potentially substantial degradation in model quality if simplifying assumptions are not

correct.

I Linear regression models coincide with classical (in complexity and quality of
deterministic part) once all possible monomial terms are included in the equation.
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HOW DO WE UTILISE PREDICTIVE MODELS?

We have to choose a distinguisher, and decide upon one of the key hypothesis:

Choose the key hypothesis which maximises the log-likelihood of the observed
traces.

OR (ignoring noise):
Choose the key hypothesis which maximises the correlation between the model

fitted values and the observed traces.

Thus profiled attacks fit neatly into the “general DPA style attack” framework. The only
difference is that we derive the leakage model from observations, rather than some a priori
assumption.
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INITIAL ANALYSIS/COMPARISON BETWEEN METHODS

Templates vs. Stochastic Methods, B. Gierlichs, K. Lemke-Rust, C. Paar. CHES 2006,
LNCS 4249: 15–29, Springer.
I LR templates recover key with fewer (profiling) traces but classical achieve higher

success rates once profiling sample is large.
I Analysis primarily experimental: true distributions unknown so difficult to comment

on model quality.
I Tested scenarios limited and favourable to LR (close to HW).

How to Compare Profiled Side-Channel Attacks?, F.X. Standaert, F. Koeune, W.
Schindler. ACNS 2009, LNCS 5536: 485–498, Springer.
I Information theoretic metric can be used to quantify model quality.
I Analysis geared more towards theory (establishing an evaluation framework).
I Tested scenarios limited to simulated HW leakage – LR has big advantage;

comparative findings do not extend to general case.
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IN-DEPTH ANALYSIS

Profiling DPA: Efficiency and Efficacy Tradeoffs, C. Whitnall, E. Oswald. CHES 2013,
LNCS 8086: 37–54, Springer.
I Explore trade-offs in a wider range of scenarios, including those not well-suited to

low-degree approximations.
I Theoretic (rather than experimental) evaluation where possible.
I Hypothetical scenarios with fully-specified leakage distributions give concrete

benchmarks for model quality/performance.

Hamming
weight
model

Degree 8
polynomial
(‘classical’)

Linear
function
of bits

Degree 4
polynomial

(for example)
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SOME EXAMPLE SCENARIOS

We considered different types of leakage functions and different amounts of added
Gaussian noise.

1. The leakage function is proportional to the Hamming weight, as motivated by typical
behaviour of CMOS technology.

2. Adjacent wires interact so that the leakage is proportional to the Hamming weight
plus quadratic terms involving adjacent bits of the intermediate value.

3. The leakage is a highly nonlinear function of the intermediate bits such as that
arising from hardware implementations of AES.
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PROFILING COMPLEXITY
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I Affects all leakage scenarios similarly.
I Estimation of maximum degree polynomials requires around 30 times traces than for

linear models.
I Little change in complexity between degree 6 and degree 8 models; real savings only

from degree 5 or lower.
I More accurate model fit (blue) comes at an exponentially increasing rate compared to

not so accurate fit (orange).
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HIGHLY NONLINEAR LEAKAGE:
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I Linear model inadequate to approximate the leakage – captures just 6% of the
variation.

I Degree 4 model accounts for about two thirds of the variation, with less than half the
number of parameters required for the classical model. 28/55



HIGHLY NONLINEAR LEAKAGE:
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I Very little difference in distinguishing power between the degree 5 and classical
models.

I Linear and quadratic models are able to recover the key, but by very small margins
and requiring lots of traces – over a hundred times as many in the case of the linear
model.

I Degree 4 model requires around twice as many traces.
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WHAT TO USE?
I Linear regression is an excellent alternative to classical profiling when the true

leakage function is simple.

I Over-simplified assumptions when the leakage is complex can substantially diminish
attack performance; but trade-offs are possible and useful in particular if only limited
training data is available.

I Device evaluation perspective:
I Classical profiling remains the best way to test for vulnerability against the strongest

possible adversary; assuming that enough data for profiling is available

I Attacker perspective:
I In our example, degree 4 models offer a promising trade-off between profiling and attack

complexity.
I Even minimal profiling can substantially increase attack performance relative to

standard assumptions (such as Hamming weight leakage) when those assumptions do
not hold.
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DL FOR PREDICTIVE MODELLING

Both MLPs and CNNs have been experimentally studied in the context of DPA style
attacks. It is important to bear a few facts in mind:

The universal approximation theorem states that “networks with two hidden layers and a
suitable activation function can approximate any continuous function on a compact domain
to any desired accuracy” (Cybenko,Hornik et al.) .

However, by only having two hidden layers, one would require an exponentially large
number of hidden neutrons per layer relative to the input size.

Neural networks are able to solve this problem by trading off the number of hidden layers
for the number of nodes within each layer. Previous work shows that by having fewer
nodes per hidden layer, ‘natural functions’ can be learnt quickly (Telgarsky).
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DL FOR PREDICTIVE MODELLING
Both MLPs and CNNs have been experimentally studied in the context of DPA style
attacks. It is important to bear a few facts in mind:

The no free lunch theorem states that a truly best learning algorithm cannot exist in
general [12].

The NFL says that we cannot know what we have not seen: any learning algorithm only
knows the “structure” of the training data, but, assuming that the training data does not
represent the full input space, it cannot be expected to generalise to the unseen test data.

Specifically theorem 2 from [12] says that for a number of probabilistic measures of
“error” (on a data set distinct from the training set), the average performance of any (pair
of) algorithms is the same.

Thus: any algorithm that turns out to generalise well for some particular dataset will
perform badly for some other dataset.
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DL FOR PREDICTIVE MODELLING

There are many papers now around that experiment with both MLPs and CNNs. There are
a few clear results/pointers:
I MLPs train more quickly than CNNs. Their representation is also more memory

efficient.
I CNNs can learn how to correct some “misalignment” because they have some

convolution layer. However, with decent pre-processing, any MLP can also cope with
misaligned data.

I Finding the “best” set of hyperparameters for a device/setup is a trial and error
process. No help is on the horizon.

I Papers find conflicting results and there is no way to conclude that DL approaches are
better than classical templating/linear regression.

But if your classical templating/LR fails, it is well worth trying an MLP if you have nice
data, and CNNs if you suspect that your data is misaligned and you cannot improve things
via classical methods (filtering, elastica alignment, PCA/LDA).
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QUIZ TIME ...

Question 4

Classical templates differ from linear regression based models because they

1. also characterise the noise

2. include covariances rather than just variances

3. are less configurable

4. are based on the assumption that the leakage is Gaussian

5. produce direct approximations instead of proportional approximations of the
leakage

(Select all answers that you believe to be correct.)
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QUIZ TIME ...

Question 5

Templates (classical ones and LR based ones)

1. can be plugged into a correlation based distinguisher

2. are suitable for DPA style attacks

3. must be used with a log-likelihood distinguisher

4. cannot approximate linear distributions very well

5. are bit-linear functions of the data

(Select all answers that you believe to be correct.)
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QUIZ TIME ...

Question 6

Deep learning based profiling

1. is provably more trace efficient than classical profiling methods

2. ensures portability of profiles

3. requires carefull tuning of the hyperparameters

4. cannot guarantee to produce profiles that outperform all other profiling
methods on a device

5. fits into a general DPA style attack framework

(Select all answers that you believe to be correct.)
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DIRECT MODELS ARE NOT OFTEN PORTABLE

Direct approximations of the device leakage are designed to capture the scale, location
and shape of the traces used for profiling.

Thus any deviation between the profiling and the attack traces potentially produces a
mismatch which renders the model unfit for purpose.

We may need to profile becaus the device model is not well approximated by anything
simple such as the HW or 0/1 model (i.e. we profile in order to get some attack to work
rather than improve an attack).

Clearly this calls for models that are nominal/ordinal approximations of the data, whereby
we emphasise the predictive power of these models for the purposes of attacks.
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(UN)SUPERVISED LEARNING

So far we have looked purely at supervised learning approaches: we assign traces from the
profiling set to some “categories”, which we define via the intermediate values.

In contrast unsupervised techniques—in particular, unsupervised clustering algorithms,
attempt to learn categories implied by the profiling traces. In other words, clustering
algorithms aim to find a meaningful arrangement of objects with no a priori knowledge
about the number or characteristics of the underlying classes.

Clustering is the task of grouping objects (in this case, observed power consumption
traces) in such a way that the objects inside any given group are similar to one another
whilst objects in different groups are dissimilar.
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USE WITHIN DPA STYLE ATTACKS

Nominal models can be used within a so-called partition-based DPA attack such as
I Mutual Information (MI) [7],
I Kolmogorov-Smirnov (KS) [10],
I the Variance Ratio (VR) [9], and its multivariate extension in the context of
I Differential Cluster Analysis (DCA) [3].

Be mindful that if the target function is injective (e.g. the AES S-box), the ‘trivial’ nominal
power model which treats each intermediate value as a distinct class invariably fails to
distinguish between key hypotheses in any partition-based DPA (see [9, 11]). Therefore, a
meaningful non-trivial grouping is required.
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DERIVING NOMINAL MODELS VIA UNSUPERVISED CLUSTERING

Task: Arrange objects s.t. those inside a given group are similar whilst those in different
groups are dissimilar.

Assumption: Number or characteristics of the underlying classes are a priori unknown
(unlike supervised classification).

Method: Large selection of iterative trial-and-error solutions:
I Cluster models vary: hierarchical, centroid-based, density- or distribution-based,

graph-based . . .
I ‘Similarity’ measures vary: Euclidean distance, correlation, Hamming, Manhattan . . .

N.B.: Notoriously difficult to match the best-suited learning algorithm to a given problem;
no learning algorithm is ‘best’ across different problems.
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DERIVING AND USING NOMINAL MODELS

General strategy
1. Partition the profiling traces according to the intermediate values and compute the

means {ȳx}x∈X .
2. Obtain a mapping M : X −→M by clustering the mean traces.

I Values in X not represented in the profiling dataset are mapped to cluster C + 1 (i.e. an
‘other’ category).

3. Use M as the (nominal) power model in ‘partition-based’ DPA against the target
traces.

The mapping in the second step thus associates each intermediate value (as represented by
its’ mean leakage value from the trace) to a “label” or model category.

There is no distance measure, or any other quantitative relationship assumed between the
model categories. Thus they give us a nominal model.
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EXAMPLE INSTANTIATION

Robust Profiling for DPA Attacks, C. Whitnall, E. Oswald. CHES 2015, LNCS 9293:
3–21, Springer.

Best configuration
Clustering algorithm: Principal component analysis followed by k-means clustering.
DPA distinguisher: Univariate and multivariate variance ratio (thus VR and DCA).
Benchmark: Correlation DPA using the first principal component to approximate a

‘proportional’ power model.

(Hierarchichal clustering was less effective than k-means clustering; We used the
shilouette index to judge the clustering quality.)
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EXPERIMENTALLY EVALUATING THE ROBUSTNESS/PORTABILITY

Data
Software: 10,000 traces from an unprotected AES implementation on an ARM

microcontroller.

Hardware: 5,000 traces from an unprotected AES implementation on an RFID-type
system.

Experimental approach
1. Randomly draw (disjoint) profiling and attack samples from the full dataset.

2. Derive nominal and proportional power models from the profiling subsample.

3. Modify the attack subsample to simulate a variety of discrepancies.

4. Perform correlation- and univariate/multivariate VR-based DPA.

5. Repeat to estimate guessing entropies (average rank of correct subkey).
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DISTORTIONS

I Width and location of “attack windows”
I Trace resolution
I Varying noise
I Inconsistent filtering
I Misalignment due to clock frequency changes

These distortions were independently applied to each attack subset. Attacks on the last
category failed alltogether.
Attacks were also applied to trace sets without any distortions to confirm the validity of the
attack principle.
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DISCREPANCY IN WINDOW WIDTH AND LOCATION

Scenario: Attacker roughly knows
the interesting ‘windows’ but cannot
match them precisely.

Attack Software Hardware

sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)

size −→ 50 400 50 400 50 400 50 400 50 400 50 400

O
ff

se
t

−bw/2c 53 1 87 1 15 1 121 65 68 1 22 1
−bw/4c 37 1 65 1 3 1 51 1 66 1 20 1

0 34 1 72 1 1 1 15 1 65 1 21 1
bw/4c 27 1 83 1 1 1 25 1 76 1 24 1
bw/2c 74 4 109 1 22 1 66 1 113 3 90 1

1
I Software attacks vulnerable to this; larger samples help to compensate.
I Hardware attacks vulnerable to the most extreme shifts.
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DISCREPANCY IN TRACE PRE-PROCESSING
Scenario: Training traces have been pre-
processed in a manner not precisely known
to the attacker.
Simulated distortion: Apply additional
filtering to the attack subsample (moving
averages).

Attack Software Hardware

sample DCA(MKM ) VR(MKM ) Corr(MP1) DCA(MKM ) VR(MKM ) Corr(MP1)

size −→ 50 400 50 400 50 400 50 400 50 400 50 400

Sm
oo

th
in

g

w
in

do
w

1 43 1 96 1 16 1 19 1 62 1 19 1
2 44 1 75 1 5 1 24 1 59 1 17 1
4 51 1 104 1 5 1 74 1 100 4 79 1
8 77 1 106 1 16 1 111 32 121 54 100 17
16 115 5 123 3 53 1 112 82 118 94 113 64

1
I Software attacks robust; smoothing pairwise even improves outcomes.
I Hardware attacks less robust (fewer clock cycles; raw traces are already shorter and

more coarsely sampled). 47/55



ROBUST PROFILING SUMMARISED . . .

I Unsupervised clustering can recover nominal power models for use in effective
‘partition-based’ DPA.
I Requirements in profiling phase are minimal relative to full profiling.
I Robustness to discrepancies between profiling and attack traces is considerably greater.

I Proportional power models can recovered under the same circumstances, for use in
correlation DPA.
I More efficient, in the case of software experiments; slightly less in the case of hardware

experiments.
I Almost as robust.

At the moment, a fair number of papers are published that advocate and explore the use of
deep learning in the context of misaligned traces. As research papers are biased towards
reporting positive results, most papers that use CNNs conclude that they are able to deal
with some degree of misalignment.

48/55



QUIZ TIME ...

Question 7

Nominal profiling methods

1. can fit into a standard DPA style attack framework

2. have the advantage of potentially coping with differences between profiling
and attack data

3. can be built based on DL, ML and classical profiling techniques

4. can provably compensate for misalignment in traces

5. require PCA as pre-processing method

(Select all answers that you believe to be correct.)
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QUIZ TIME ...

Question 8

Robustness is important

1. if the profiling traces are not from the same device as the attack traces

2. if countermeasures impact on the trace acquisitions

3. because differences in the properties of traces may change over time

4. to assess the potential for real world/outside of the lab attacks

5. because profiling is mandated by some evaluation regimes

(Select all answers that you believe to be correct.)
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Thank You for Listening!

Some slides were created by Carolyn Whitnall. Much of this
research resulted through my collaboration with her.
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