
On the Security of Keyed Hashing

Joan Daemen (based on joint work with Jonathan Fuchs and Yann Rotella)

Radboud University (The Netherlands)

ISC Winter School on Information Security and Cryptology, February 24, 2021

1 / 29



Outline

Deck functions and some modes

How to build a deck function?

Keyed hashing

Two concrete constructions

Choosing the block function

2 / 29



Deck functions and some modes



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO

• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)

3 / 29



Stream encryption: short input, long output

nonce

plaintext = ciphertext

C ← P + FK (N)

4 / 29



MAC computation: long input, short output

plaintext

plaintext

T ← 0t + FK (P)

5 / 29



Authenticated encryption (AE)

nonce

plaintext = ciphertext

ciphertext

C = P + FK (N) , T = 0t + FK (C ◦ N)

. . . and much more, see Youtube video of All on Deck! [Keccak Team, RWC 2020]

https://www.youtube.com/watch?v=CQDsLhf-d-A at minute 30

6 / 29

https://www.youtube.com/watch?v=CQDsLhf-d-A


Authenticated encryption (AE)

nonce

plaintext = ciphertext

ciphertext

C = P + FK (N) , T = 0t + FK (C ◦ N)

. . . and much more, see Youtube video of All on Deck! [Keccak Team, RWC 2020]

https://www.youtube.com/watch?v=CQDsLhf-d-A at minute 30

6 / 29

https://www.youtube.com/watch?v=CQDsLhf-d-A


How to build a deck function?



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing

7 / 29



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing

7 / 29



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing

7 / 29



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing
7 / 29



A parallel deck function construction: Farfalle [KT, ToSC 2017]

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Expands secret key K to secret rolling mask k

• Compression of masked input blocks into accumulator

• Expansion: rolling state filtered by f and secret mask

8 / 29



A parallel deck function construction: Farfalle [KT, ToSC 2017]

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Expands secret key K to secret rolling mask k

• Compression of masked input blocks into accumulator

• Expansion: rolling state filtered by f and secret mask

8 / 29



A parallel deck function construction: Farfalle [KT, ToSC 2017]

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Expands secret key K to secret rolling mask k

• Compression of masked input blocks into accumulator

• Expansion: rolling state filtered by f and secret mask

8 / 29



A parallel deck function construction: Farfalle [KT, ToSC 2017]

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Expands secret key K to secret rolling mask k

• Compression of masked input blocks into accumulator

• Expansion: rolling state filtered by f and secret mask
8 / 29



Attacks on a deck function

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

To design you need to understand the attacks. Three types:

• Using both input and output: as block cipher attacks

• Output-only: as classical stream cipher attacks

• Input-only: accumulator collisions

: this presentation

9 / 29



Attacks on a deck function

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

To design you need to understand the attacks. Three types:

• Using both input and output: as block cipher attacks

• Output-only: as classical stream cipher attacks

• Input-only: accumulator collisions

: this presentation

9 / 29



Attacks on a deck function

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

To design you need to understand the attacks. Three types:

• Using both input and output: as block cipher attacks

• Output-only: as classical stream cipher attacks

• Input-only: accumulator collisions

: this presentation

9 / 29



Attacks on a deck function

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

To design you need to understand the attacks. Three types:

• Using both input and output: as block cipher attacks

• Output-only: as classical stream cipher attacks

• Input-only: accumulator collisions

: this presentation

9 / 29



Attacks on a deck function

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

To design you need to understand the attacks. Three types:

• Using both input and output: as block cipher attacks

• Output-only: as classical stream cipher attacks

• Input-only: accumulator collisions: this presentation
9 / 29



Keyed hashing



Keyed Hashing

• F : K ×M→ A
• K: key space

• M: message space

• A: digest space, forms an additive group and A≪M

• Convention: Fk denotes F with a fixed key k ∈ K

m Fk digest

10 / 29



Keyed Hashing

• F : K ×M→ A
• K: key space

• M: message space

• A: digest space, forms an additive group and A≪M
• Convention: Fk denotes F with a fixed key k ∈ K

m Fk digest

10 / 29



Security notion: blinded keyed hash security

m Fk

∆

RO1
m

∆
RO2

• Distinguishing setup with attacker that can send queries (m,∆) to either:

• real world: Fk followed by secret RO1

• ideal world: secret RO2

• Only way to distinguish: collision at input of RO1

• success probability independent of attacker’s computational resources

• adaptability does not help so attacker can fix queries in advance

11 / 29



Security notion: blinded keyed hash security

m Fk

∆

RO1
m

∆
RO2

• Distinguishing setup with attacker that can send queries (m,∆) to either:

• real world: Fk followed by secret RO1

• ideal world: secret RO2

• Only way to distinguish:

collision at input of RO1

• success probability independent of attacker’s computational resources

• adaptability does not help so attacker can fix queries in advance

11 / 29



Security notion: blinded keyed hash security

m Fk

∆

RO1
m

∆
RO2

• Distinguishing setup with attacker that can send queries (m,∆) to either:

• real world: Fk followed by secret RO1

• ideal world: secret RO2

• Only way to distinguish: collision at input of RO1

• success probability independent of attacker’s computational resources

• adaptability does not help so attacker can fix queries in advance

11 / 29



Security notion: blinded keyed hash security

m Fk

∆

RO1
m

∆
RO2

• Distinguishing setup with attacker that can send queries (m,∆) to either:

• real world: Fk followed by secret RO1

• ideal world: secret RO2

• Only way to distinguish: collision at input of RO1

• success probability independent of attacker’s computational resources

• adaptability does not help so attacker can fix queries in advance

11 / 29



Security notion: blinded keyed hash security

m Fk

∆

RO1
m

∆
RO2

• Distinguishing setup with attacker that can send queries (m,∆) to either:

• real world: Fk followed by secret RO1

• ideal world: secret RO2

• Only way to distinguish: collision at input of RO1

• success probability independent of attacker’s computational resources

• adaptability does not help so attacker can fix queries in advance
11 / 29



Blinded keyed hash security and deck functions

m Fk

∆

RO1
m

∆
RO2

Applied to deck functions:

• This expresses the security against input-only attacks on compression phase

• We model the expansion phase as an independent RO1

• ∆ = 0 (but ∆ 6= 0 is meaningful in reductions and other scenario’s)

• We study the collision probability of sets of queries AKA message sets D

12 / 29



Blinded keyed hash security and deck functions

m Fk

∆

RO1
m

∆
RO2

Applied to deck functions:

• This expresses the security against input-only attacks on compression phase

• We model the expansion phase as an independent RO1

• ∆ = 0 (but ∆ 6= 0 is meaningful in reductions and other scenario’s)

• We study the collision probability of sets of queries AKA message sets D

12 / 29



Blinded keyed hash security and deck functions

m Fk

∆

RO1
m

∆
RO2

Applied to deck functions:

• This expresses the security against input-only attacks on compression phase

• We model the expansion phase as an independent RO1

• ∆ = 0 (but ∆ 6= 0 is meaningful in reductions and other scenario’s)

• We study the collision probability of sets of queries AKA message sets D

12 / 29



Blinded keyed hash security and deck functions

m Fk

∆

RO1
m

∆
RO2

Applied to deck functions:

• This expresses the security against input-only attacks on compression phase

• We model the expansion phase as an independent RO1

• ∆ = 0 (but ∆ 6= 0 is meaningful in reductions and other scenario’s)

• We study the collision probability of sets of queries AKA message sets D

12 / 29



Blinded keyed hash security and deck functions

m Fk

∆

RO1
m

∆
RO2

Applied to deck functions:

• This expresses the security against input-only attacks on compression phase

• We model the expansion phase as an independent RO1

• ∆ = 0 (but ∆ 6= 0 is meaningful in reductions and other scenario’s)

• We study the collision probability of sets of queries AKA message sets D

12 / 29



Collision Probability and security strength

• Fk maps messages in D to digests,

all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk

13 / 29



Collision Probability and security strength

• Fk maps messages in D to digests, all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk

13 / 29



Collision Probability and security strength

• Fk maps messages in D to digests, all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk

13 / 29



Collision Probability and security strength

• Fk maps messages in D to digests, all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk

13 / 29



Collision Probability and security strength

• Fk maps messages in D to digests, all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk

13 / 29



Collision Probability and security strength

• Fk maps messages in D to digests, all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk

13 / 29



Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit

14 / 29



Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit

14 / 29



Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit

14 / 29



Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit

14 / 29



Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit

14 / 29



Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit

14 / 29



The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2

15 / 29



The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2

15 / 29



The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2

15 / 29



The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2

15 / 29



The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2

15 / 29



The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2

15 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

16 / 29



Two concrete constructions



Serial construction

• From a block function f : G → G . . .

• we build a keyed compression function Fserial : K ×M→ A with

• K = Gκ

• A = G

• M =
κ⋃
`=1

G `

• f is typically a permutation, but not necessarily

m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

17 / 29



Parallel construction

• From a block function f : G → G ′ . . .

• we build a keyed compression function Fserial : K ×M→ A with

• K = Gκ

• A = G ′

• M =
κ⋃
`=1

G `

• f is typically a permutation, but not necessarily

m1 m2 m`−1 m`

k1 k2 k`−1 k`

f f f f

. . .

. . .

digest

18 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M
• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0

19 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M
• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0

19 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M

• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0

19 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M
• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0

19 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M
• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0

19 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M
• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0

19 / 29



Two-message attacks: CPL(2) with limitation ∆ = 0

• In deck functions we have ∆ = 0

• We prove if ∆ = 0, then CPL(2) = CPL2(2) with

• serial construction: CPL2(2) = maxa,b DPf (a, b)

• parallel construction: CPL2(2) = maxa
∑

b (DPf (a, b))2

m1

k1

f

m2

k2

f digest00

−b
b

a

m1 m2

k1 k2

f f

digest

a

b

−a

−b 0

20 / 29



Two-message attacks: CPL(2) with limitation ∆ = 0

• In deck functions we have ∆ = 0

• We prove if ∆ = 0, then CPL(2) = CPL2(2) with

• serial construction: CPL2(2) = maxa,b DPf (a, b)

• parallel construction: CPL2(2) = maxa
∑

b (DPf (a, b))2

m1

k1

f

m2

k2

f digest00

−b
b

a

m1 m2

k1 k2

f f

digest

a

b

−a

−b 0

20 / 29



Two-message attacks: CPL(2) with limitation ∆ = 0

• In deck functions we have ∆ = 0

• We prove if ∆ = 0, then CPL(2) = CPL2(2) with

• serial construction: CPL2(2) = maxa,b DPf (a, b)

• parallel construction: CPL2(2) = maxa
∑

b (DPf (a, b))2

m1

k1

f

m2

k2

f digest00

−b
b

a

m1 m2

k1 k2

f f

digest

a

b

−a

−b 0

20 / 29



Two-message attacks: CPL(2) with limitation ∆ = 0

• In deck functions we have ∆ = 0

• We prove if ∆ = 0, then CPL(2) = CPL2(2) with

• serial construction: CPL2(2) = maxa,b DPf (a, b)

• parallel construction: CPL2(2) = maxa
∑

b (DPf (a, b))2

m1

k1

f

m2

k2

f digest00

−b
b

a

m1 m2

k1 k2

f f

digest

a

b

−a

−b 0

20 / 29



Two-message attacks: CPL(2) with limitation ∆ = 0

• In deck functions we have ∆ = 0

• We prove if ∆ = 0, then CPL(2) = CPL2(2) with

• serial construction: CPL2(2) = maxa,b DPf (a, b)

• parallel construction: CPL2(2) = maxa
∑

b (DPf (a, b))2

m1

k1

f

m2

k2

f digest00

−b
b

a

m1 m2

k1 k2

f f

digest

a

b

−a

−b 0

20 / 29



What can we conclude from CPL(2)?

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

21 / 29



What can we conclude from CPL(2)?

q

CPF
B

ir
th

da
y

B
ou

nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

21 / 29



What can we conclude from CPL(2)?

q

CPF
B

ir
th

da
y

B
ou

nd

•1
#A

•
√

#A

Q
ua

dr
at

ic
Li

m
it

•D ′•CPL(2)

2•

CPL

21 / 29



Intermezzo: offset invariance

Definition: a message set D offset by µ: D + µ = {m + µ | m ∈ D}

m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

We prove, for both the serial and the parallel construction:

Lemma (offset-invariance)

The collision probability is invariant under an offsets of the message set

∀µ ∈ Gκ : CPF (D + µ) = CPF (D)

22 / 29



Intermezzo: offset invariance

Definition: a message set D offset by µ: D + µ = {m + µ | m ∈ D}
m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

We prove, for both the serial and the parallel construction:

Lemma (offset-invariance)

The collision probability is invariant under an offsets of the message set

∀µ ∈ Gκ : CPF (D + µ) = CPF (D)

22 / 29



Intermezzo: offset invariance

Definition: a message set D offset by µ: D + µ = {m + µ | m ∈ D}
m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

We prove, for both the serial and the parallel construction:

Lemma (offset-invariance)

The collision probability is invariant under an offsets of the message set

∀µ ∈ Gκ : CPF (D + µ) = CPF (D)

22 / 29



Intermezzo: offset invariance

Definition: a message set D offset by µ: D + µ = {m + µ | m ∈ D}
m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

We prove, for both the serial and the parallel construction:

Lemma (offset-invariance)

The collision probability is invariant under an offsets of the message set

∀µ ∈ Gκ : CPF (D + µ) = CPF (D)

22 / 29



Linear extension of a message set

For D ′ = D ∪ (D + µ) with µ random

E(CP(D ′)) ≥ 1− (1− CP(D))2 ≈ 2CP(D)

In general for D ′ =
⋃

1≤i≤n D + µi

E(CP(D ′)) ≈ nCP(D)

. . . up to the birthday bound (D†)

q

CPF

•D
•D ′

•D†

2•

CPL

•1
#A

•
√

#A

23 / 29



Linear extension of a message set

For D ′ = D ∪ (D + µ) with µ random

E(CP(D ′)) ≥ 1− (1− CP(D))2 ≈ 2CP(D)

In general for D ′ =
⋃

1≤i≤n D + µi

E(CP(D ′)) ≈ nCP(D)

. . . up to the birthday bound (D†)

q

CPF

•D
•D ′

•D†

2•

CPL

•1
#A

•
√

#A

23 / 29



Linear extension of a message set

For D ′ = D ∪ (D + µ) with µ random

E(CP(D ′)) ≥ 1− (1− CP(D))2 ≈ 2CP(D)

In general for D ′ =
⋃

1≤i≤n D + µi

E(CP(D ′)) ≈ nCP(D)

. . . up to the birthday bound (D†)

q

CPF

•D
•D ′

•D†

2•

CPL

•1
#A

•
√

#A

23 / 29



Linear extension of a message set

For D ′ = D ∪ (D + µ) with µ random

E(CP(D ′)) ≥ 1− (1− CP(D))2 ≈ 2CP(D)

In general for D ′ =
⋃

1≤i≤n D + µi

E(CP(D ′)) ≈ nCP(D)

. . . up to the birthday bound (D†)

q

CPF

•D
•D ′

•D†

2•

CPL

•1
#A

•
√

#A

23 / 29



Choosing the block function



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?

24 / 29



Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60

25 / 29



Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60

25 / 29



Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60

25 / 29



Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60

25 / 29



Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60

25 / 29



Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60

25 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f

26 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment

27 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo

:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Example of wide permutation: Xoodoo

For 6-round Xoodoo:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192

28 / 29



Conclusion

Keyed hashing with wide permutations

• can be very competitive

• parallel construction outperforms serial construction

Future work

• further investigate trails in wide permutations

• add key expansion

Thank you for your attention!

29 / 29



Conclusion

Keyed hashing with wide permutations

• can be very competitive

• parallel construction outperforms serial construction

Future work

• further investigate trails in wide permutations

• add key expansion

Thank you for your attention!

29 / 29



Conclusion

Keyed hashing with wide permutations

• can be very competitive

• parallel construction outperforms serial construction

Future work

• further investigate trails in wide permutations

• add key expansion

Thank you for your attention!

29 / 29


	Deck functions and some modes
	How to build a deck function?
	Keyed hashing
	Two concrete constructions
	Choosing the block function

