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Deck functions and some modes



An alternative for block-cipher based crypto

1 Instead of a block cipher, construct a deck function FK

• FK has arbitrary-length input and output

• goal : FK behaves like a random oracle RO
• PRF distinguishing advantage εp(M,N) assumed to be small

• assurance: based on public scrutiny by cryptanalysts

2 Build encryption or authentication mode of a random oracle

• prove upper bound εm(M,N) for probability of breaking it

Security of mode with concrete FK

Breaking probability ≤ εm(M,N) + εp(M,N)
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Stream encryption: short input, long output

nonce

plaintext = ciphertext

C ← P + FK (N)
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MAC computation: long input, short output

plaintext

plaintext

T ← 0t + FK (P)
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Authenticated encryption (AE)

nonce

plaintext = ciphertext

ciphertext

C = P + FK (N) , T = 0t + FK (C ◦ N)

. . . and much more, see Youtube video of All on Deck! [Keccak Team, RWC 2020]

https://www.youtube.com/watch?v=CQDsLhf-d-A at minute 30
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How to build a deck function?



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing

7 / 29



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing

7 / 29



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing

7 / 29



A serial deck function construction: donkeySponge [KT, DIAC 2012]

Sponge with secret key K as initial state

• Compression of input blocks into state: full-state sponge absorbing

• Expansion of state to output stream: standard sponge squeezing
7 / 29



A parallel deck function construction: Farfalle [KT, ToSC 2017]

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Expands secret key K to secret rolling mask k

• Compression of masked input blocks into accumulator

• Expansion: rolling state filtered by f and secret mask
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Attacks on a deck function

fm0
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To design you need to understand the attacks. Three types:

• Using both input and output: as block cipher attacks

• Output-only: as classical stream cipher attacks

• Input-only: accumulator collisions

: this presentation
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Keyed hashing



Keyed Hashing

• F : K ×M→ A
• K: key space

• M: message space

• A: digest space, forms an additive group and A≪M

• Convention: Fk denotes F with a fixed key k ∈ K

m Fk digest
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Security notion: blinded keyed hash security

m Fk

∆

RO1
m

∆
RO2

• Distinguishing setup with attacker that can send queries (m,∆) to either:

• real world: Fk followed by secret RO1

• ideal world: secret RO2

• Only way to distinguish: collision at input of RO1

• success probability independent of attacker’s computational resources

• adaptability does not help so attacker can fix queries in advance
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Blinded keyed hash security and deck functions

m Fk

∆

RO1
m

∆
RO2

Applied to deck functions:

• This expresses the security against input-only attacks on compression phase

• We model the expansion phase as an independent RO1

• ∆ = 0 (but ∆ 6= 0 is meaningful in reductions and other scenario’s)

• We study the collision probability of sets of queries AKA message sets D
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Collision Probability and security strength

• Fk maps messages in D to digests,

all different ones . . .

or not: this a collision in Fk(D)

• Solution set of D:

S(D) = {k ∈ K | collision in Fk(D)}

• Collision probability of a message set:

CPF (D) =
#S(D)

#K

• Collision probability limit

CPL(q) = max
D with #D=q

CPF (D)

m1

m2

mq

D

digest1

digest2

digest3

A

Fk

Fk

Fk
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Graphical view

• We can position message sets D as points in a plane

(x , y) = (#D,CPF (D))

• CPL(q) is the envelope of all these points

• Security strength s:

s = min
D

(log2(#D)− log2(CPF (D)))

• CPL(q) defines security strength

s = min
q

(log2(q)− log2(CPL(q)))

• In real-world settings q may be limited

q

CPF

2•

•

•

•

•

•

•

•

•

•

•

•2−s

•2
s

Data Limit
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The Birthday Bound

• Let F be a random function

• Let D be 2 random messages in M

CPF (D) =
1

#A

• Let D be q random messages in M

CPF (D) ≈
(
q

2

)
1

#A

• For an actual function it is worse, so:

CPL(q) ≥
(
q

2

)
1

#A

• This is the Birthday Bound

q

CPF

B
ir

th
da

y
B

ou
nd

•1
#A

•
√

#A
•2
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The Quadratic Limit

Often we know CPL(v) for small values of v

• For v = 2 it is easy to show that

CPL(q) ≤
(
q

2

)
CPL(2)

• Equality on two conditions:

• ∃D with all
(q
2

)
pairs D ′ having CPL(2): it

is collision-dense

• the S(D ′) are disjunct (union bound)

• We prove that in general, for any q > v > 1

CPL(q) ≤ q(q − 1)

v(v − 1)
CPL(v)

q

CPF

B
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th
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y
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ou
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•
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Two concrete constructions



Serial construction

• From a block function f : G → G . . .

• we build a keyed compression function Fserial : K ×M→ A with

• K = Gκ

• A = G

• M =
κ⋃
`=1

G `

• f is typically a permutation, but not necessarily

m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

17 / 29



Parallel construction

• From a block function f : G → G ′ . . .

• we build a keyed compression function Fserial : K ×M→ A with

• K = Gκ

• A = G ′

• M =
κ⋃
`=1

G `

• f is typically a permutation, but not necessarily

m1 m2 m`−1 m`

k1 k2 k`−1 k`

f f f f

. . .

. . .

digest

18 / 29



Two-message attacks: CPL(2)

• We prove that for f a permutation, the best attacks have equal-length messages

• Definitions:

• Fixed-length CPL: CPLn(2) denotes CPL(2) for messages in Gn ⊂M
• Differential probability: DPf (a, b) = Pr(f (m + k + a)− f (m + k) = b)

• We prove for both constructions CPLn(2) ≤ CPLn−1(2) for n > 1

• We prove for both constructions: CPL(2) = maxa,b DPf (a, b)

k

m

f
∆

digest
b

a

−b

0
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Two-message attacks: CPL(2) with limitation ∆ = 0

• In deck functions we have ∆ = 0

• We prove if ∆ = 0, then CPL(2) = CPL2(2) with

• serial construction: CPL2(2) = maxa,b DPf (a, b)

• parallel construction: CPL2(2) = maxa
∑

b (DPf (a, b))2

m1
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f

m2

k2

f digest00
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b
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f f
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What can we conclude from CPL(2)?
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Intermezzo: offset invariance

Definition: a message set D offset by µ: D + µ = {m + µ | m ∈ D}

m1

k1

f

m2

k2

f . . .

. . .

f

m`

k`

f digest

We prove, for both the serial and the parallel construction:

Lemma (offset-invariance)

The collision probability is invariant under an offsets of the message set

∀µ ∈ Gκ : CPF (D + µ) = CPF (D)
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Linear extension of a message set

For D ′ = D ∪ (D + µ) with µ random

E(CP(D ′)) ≥ 1− (1− CP(D))2 ≈ 2CP(D)

In general for D ′ =
⋃

1≤i≤n D + µi

E(CP(D ′)) ≈ nCP(D)

. . . up to the birthday bound (D†)

q
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•D†
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CPL
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Choosing the block function



Take 1: pseudorandom permutation

• Take a n-bit block cipher with a secret key

• distinguishing advantage by adversary limited to forward queries: PRP

• claimed advantage εp(N,M) gives:

CPL(q) ≤
(
q

2

)
2−n + εp(N, q)

• If εp(N, q) is small, we find ourselves on the birthday bound

• This is common practice in MAC functions

• spot the serial construction in CBC-MAC [ANSI X9.9 1986]

• spot the parallel construction in PMAC [Black, Rogaway 2001]

• Did we really come all this way to fall back on block ciphers?
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Take 2: strong block function

Take n-bit f that satisfies maxa,b DP(a, b) = 2x−n for some small x

Example

• 4-round unkeyed AES

• as used in Pelican-MAC [Daemen, Rijmen 2005]

• in serial construction

• plausibly maxa,b DP(a, b) < 2−120

• security almost as good as full AES

• 2.5 times faster than AES in CBC MAC

q

CPF

2•

•2−128

•2
64

•2−120

•2
60
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Take 3: wide permutation

• Three steps:

1 Define a target security strength s

2 Choose for f a permutation with width � 2s (typical widths: 384, 512, 1600)

3 Take enough rounds in f so that CPL(q)/q ≤ 2−s for all q

• Conservative approach: take number of rounds such that CPL(2) ≥ 2−2s

• More refined approach

• considers ability to build collision-dense message sets

• considers overlap between solution sets within such message sets

• requires deep understanding of difference propagation properties of f
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Example of wide permutation: Xoodoo with width 384 [KT, ToSC 2018]

• We experimented with toy example 3-round Xoodoo

• Serial construction

• CPL(2) = maxa,b DP(a, b) = 2−36

• collision-dense input sets up to size q = 218

• security strength s = 18

• Parallel construction

• CPL(2) = maxa
∑

b (DP(a, b))2 = 2−44

• collision-dense input sets up to size q = 28

• security strength s = 36

• Observations:

• parallel construction twice as secure as serial construction

• CPL(q) has quadratic segment followed by linear segment
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Example of wide permutation: Xoodoo

For 6-round Xoodoo

:

• current trail bounds imply:

• serial: CPL(2) ≤ 2−104 and s ≥ 84

• parallel: CPL(2) ≤ 2−198 and s ≥ 168

assuming . . .

• independent keys

• no massive trail clustering in differentials

is it fair to compare 6R Xoodoo with 4R AES?

• 4R AES takes about 3 times more operations

per bit than 6R Xoodoo

q

CPF

2•

•2−128

•2
64

•2−384

•2192
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Conclusion

Keyed hashing with wide permutations

• can be very competitive

• parallel construction outperforms serial construction

Future work

• further investigate trails in wide permutations

• add key expansion

Thank you for your attention!
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