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Modern ciphers
designed with very strong assumptions

• Kerckhoff’s Principle
• The system is completely known to the attacker. This includes encryption & 

decryption algorithms, plaintext  
• only the key is secret

• Why do we make this assumption?
• Algorithms can be leaked (secrets never remain secret)
• or reverse engineered
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Mallory’s task is therefore very difficult….



Security as strong as its weakest link

• Mallory just needs to find 
the weakest link in the 
system ….there is still hope!!!
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Side Channels
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Side Channel Analysis
(the weak links)
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Side Channel Analysis
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Types of Side Channel Attacks

Passive Attacks Active Attack

Non-Invasive Attacks Side-channel attacks:
timing attack, Power+EM attacks, 
cache trace

Insert fault in device without 
depackaging: using clock glitch, 
power glitch, change in 
temperature

Semi—invasive attacks
(device is depackaged but no direct 
electrical contact is made to the 
chip surface)

Read out memory of device 
without probing or using the 
normal read out circuits

Induce faults in depackaged
devices with x-rays, EM fields, or 
optical mechanisms

Invasive Attacks
(no limits on what is done with the 
device)

Probing depackaged device and 
observe data signals

Depackaged devices are 
manipulated by probing using laser 
beams, and focused ion beams.
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Fault Attacks on Ciphers
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ciphertext

Secret Key



Fault injection needs to be precise

SEAL Lab, IIT Kharagpur

Attributes of a fault:
-- X, Y coordinates for fault injection
-- time instant laser to be turned on
-- laser intensity
-- type of fault (random / stuck at)

Exploitable Fault depend considerably on the cipher algorithm

Laser fault injection
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Clock glitch fault injection



Fault Models
• Bit model : When fault is injected, exactly one bit in the state is altered

eg.   8823124345 à 8833124345

• Byte model : exactly one byte in the state is altered
eg.   8823124345 à 8836124345

• Multiple byte model : faults affect  more than one byte
eg.   8823124345 à 8836124333
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Practical

Attack easiness



Fault Models
• Stuck at Fault : When fault is injected, bits forced to be stuck at 0 (or 1)

eg. 882312434F à 8823124340

• Transient random model : data is randomly altered for a short duration
eg.   8823124345 à 8836124345
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Practical

Attack easiness

Fault injection is difficult…. The attacker would want to reduce the number of faults to
be injected



AES Fault Attacks – A Case Study
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A Simple Fault Attack on AES
• Attacker has the capability of  resetting a particular line 

during the AES round key addition. 
(i.e. exactly one bit is reset)

• Attack Procedure
1. Encrypt plaintext to get ciphertext C
2. Inject fault in the i-th bit as shown. Get the ciphertext C*
3. If C=C*, we infer Ki = 1

If C≠C*, we infer Ki = 0

• This techniques requires 128 stuck at 0 faults to be 
injected.
• difficult… can we do better?
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Differential Properties of a cipher
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Improving the AES attack 
last round, bit fault
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Each value of        will give one solution for k.
Thus, 8 solutions for k



Improving the AES attack 
last round, bit fault
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16 keys, present. Thus total complexity of the attack is 816

(approximately 248).

16 bit faults required.



Improving the AES attack 
9-th round, random fault
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Complexity to solve the 4 equations is 28.
Will deliver 4 key bytes (32 bits).



Improving the AES attack 
9-th round, random fault

18

Complexity to solve the 4 equations is 28.
Will deliver 4 key bytes (32 bits).

4 faults required to get 128 bits of key.
Total complexity, 28*4=232



Improving the AES attack
8th round, random fault
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`

`
`

`• A single fault injected in the 8th round will 
spread to 4 bytes in the 9th round.

• This is equivalent to having 4 faults in each of 
the 4 columns. 

• A single fault can thus be used to determine 
all key bytes.

• The offline key space is 232 as before. This 
can be reduced to 28 using the key expansion 
algorithm



XFC: A Framework for Exploitable Fault 
Characterization in Block Ciphers

XFC

@DAC 2017 20



The Central Idea

S S
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The Central Idea

Linear functions in 
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Specifying the Block Cipher

are Boolean functions

Could be Linear functions

or Non Linear functions

P C

XFC
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Specifying the Block Cipher

are Boolean functions

Could be Linear functions

or Non Linear functions

AES Specification

40 functions
F1 (AddRoundKey) is Linear
F2 (SubBytes of Round 1) is Non-Linear
F3 (ShiftRows of Round 1) is Linear
F4 (MixColumns of Round 1) is Linear

F5 (AddRoundKey) is Linear
F6 (SubBytes of Round 2) is Non-Linear
F7 (ShiftRows of Round 2) is Linear
F8 (MixColumns of Round 2) is Linear

F37 (AddRoundKey of Round 9) is Linear
F38 (SubBytes of Round 10) is Non-Linear
F39 (ShiftRows of Round 10) is Linear
F40 (AddRoundKey of Round 10) is Linear

P C
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Specifying the Fault Location

Example: 

A Fault in the 1st Byte of the 5th Round SubBytes operation

XFC

P C
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XFC’s Two Phases

XFC
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(Phase 1) Fault Propagation
S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Key Addition

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Color the fault affected part.

Propagate and color as follows.

1. When passing through a linear layer, retain same color

2. When passing through a non-linear layer, change color

3. If two bytes of different colors are combined, change the 
color.

Same colors are linearly correlated
Different colors are not correlated
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S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion
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Key Addition
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Linear
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(Phase 2) Key Determination

The  offline complexity to find               is 24 ; ie the possible values     
can take.  

Can be used to determine 

Back propagate and try to match colors whenever we hit an s-box

Similarly,
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Finding the Sweet Spot

Keep the block cipher specification fixed and iterate 
through all possible fault locations

Sweet spots
XFC’s results are both sound and complete. 

@ACM TODAES 2020

Multiple fault positions
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Applications of XFC

XFC

Automatically evaluate new cipher algorithms for Fault Attacks

cipher algorithm

Fault Attack aware Compilers (for software)

.c

XFC

Compiler
.exe
with countermeasures incorporated

New cipher algorithm
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Applications of XFC

XFC

Automatically evaluate new cipher algorithms for Fault Attacks

cipher algorithm

Fault Attack aware EDA tools (for VLSI design)

.verilog

XFC

EDA tool
.netlist
with countermeasures incorporated

New cipher algorithm
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Mapping fault vulnerable operations to an 
implementation
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Algorithm Specification

Implementation

XFC
FEDS / SOLOMON

@TCHES 2020, @DATE 2020



SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware
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SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware
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SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware
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SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware
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SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware
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SAT Clauses
of

Specification

SAT Causes
of

Implementation

input

Find an input which results in different 
outputs

UNSAT
?Equivalent Not 

Equivalentyes no



SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware
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SAT Clauses
Specification

SAT Causes
Implementation

inputs

Find an input which results in different 
outputs

UNSAT
?Equivalent Not 

Equivalentyes no
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SOLOMON: An automated framework for 
detecting fault attack vulnerabilities in hardware

@DATE 2020



FEDS: An Automated framework for detect 
fault attack vulnerabilities in Software
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XFC

XFC

XFC

@TCHES 2020



Fault Evaluation of 7 different implementations of AES
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Automated Countermeasures using XFC

cipher algorithm

Fault Attack aware Compilers

.c

XFC

Compiler
.exe or .netlist 
with countermeasures incorporated
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Thank you for your attention
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Source code: https://bitbucket.org/casl/faultanalysis/src/master/


