
Fault Attacks on Block Ciphers
(Attacks and Automated Evaluation)

Chester Rebeiro
IIT Madras

1

Modern ciphers
designed with very strong assumptions

• Kerckhoff’s Principle
• The system is completely known to the attacker. This includes encryption &

decryption algorithms, plaintext
• only the key is secret

• Why do we make this assumption?
• Algorithms can be leaked (secrets never remain secret)
• or reverse engineered

2

Mallory’s task is therefore very difficult….

Security as strong as its weakest link

• Mallory just needs to find
the weakest link in the
system ….there is still hope!!!

3

Alice Bob

message
“Attack at Dawn!!”

untrusted communication linkE D

KE KD

“Attack at Dawn!!”
encryption decryption

#%AR3Xf34^$
(ciphertext)

Side Channels

4

Side Channel Analysis
(the weak links)

5

Alice Bob

message
“Attack at Dawn!!”

untrusted communication link

Mallory
Side Channels
Eg. Power consumption / radiation
of device, execution time, etc.

E D

KE KD

“Attack at Dawn!!”
encryption decryption

#%AR3Xf34($
(ciphertext)

Gets information about the keys by monitoring
Side channels of the device

side channels

Side Channel Analysis

6

Radiation from
Device

0 1 1 1Secret information 0 1

Alice

message
“Attack at Dawn!!”

E

00111

encryption

Mallory measures some
Physical parameter of the device
Like radiation, power consumption or
timing

Types of Side Channel Attacks

Passive Attacks Active Attack

Non-Invasive Attacks Side-channel attacks:
timing attack, Power+EM attacks,
cache trace

Insert fault in device without
depackaging: using clock glitch,
power glitch, change in
temperature

Semi—invasive attacks
(device is depackaged but no direct
electrical contact is made to the
chip surface)

Read out memory of device
without probing or using the
normal read out circuits

Induce faults in depackaged
devices with x-rays, EM fields, or
optical mechanisms

Invasive Attacks
(no limits on what is done with the
device)

Probing depackaged device and
observe data signals

Depackaged devices are
manipulated by probing using laser
beams, and focused ion beams.

7

Fault Attacks on Ciphers

ENCRYPTION

Analysis

fault injection
plaintext

faulty ciphertext

ciphertext

Secret Key
Retrieved within a few seconds

8

ciphertext

Secret Key

Fault injection needs to be precise

SEAL Lab, IIT Kharagpur

Attributes of a fault:
-- X, Y coordinates for fault injection
-- time instant laser to be turned on
-- laser intensity
-- type of fault (random / stuck at)

Exploitable Fault depend considerably on the cipher algorithm

Laser fault injection

9

Clock glitch fault injection

Fault Models
• Bit model : When fault is injected, exactly one bit in the state is altered

eg. 8823124345 à 8833124345

• Byte model : exactly one byte in the state is altered
eg. 8823124345 à 8836124345

• Multiple byte model : faults affect more than one byte
eg. 8823124345 à 8836124333

10

Practical

Attack easiness

Fault Models
• Stuck at Fault : When fault is injected, bits forced to be stuck at 0 (or 1)

eg. 882312434F à 8823124340

• Transient random model : data is randomly altered for a short duration
eg. 8823124345 à 8836124345

11

Practical

Attack easiness

Fault injection is difficult…. The attacker would want to reduce the number of faults to
be injected

AES Fault Attacks – A Case Study

AddRndKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

plaintext

ciphertext
(after 10 rounds)

R
ep

ea
t 1

0
tim

es

La
st

 ro
un

d

12

A Simple Fault Attack on AES
• Attacker has the capability of resetting a particular line

during the AES round key addition.
(i.e. exactly one bit is reset)

• Attack Procedure
1. Encrypt plaintext to get ciphertext C
2. Inject fault in the i-th bit as shown. Get the ciphertext C*
3. If C=C*, we infer Ki = 1

If C≠C*, we infer Ki = 0

• This techniques requires 128 stuck at 0 faults to be
injected.
• difficult… can we do better?

13

AES

p0

c0

p1 p127

k0 k1 k127

c1 c127

ciphertext

Last Round
Key Addition

AES Encryption

stuck at 0 fault

Differential Properties of a cipher

14

S S

Improving the AES attack
last round, bit fault

15

Each value of will give one solution for k.
Thus, 8 solutions for k

Improving the AES attack
last round, bit fault

16

16 keys, present. Thus total complexity of the attack is 816

(approximately 248).

16 bit faults required.

Improving the AES attack
9-th round, random fault

17

Complexity to solve the 4 equations is 28.
Will deliver 4 key bytes (32 bits).

Improving the AES attack
9-th round, random fault

18

Complexity to solve the 4 equations is 28.
Will deliver 4 key bytes (32 bits).

4 faults required to get 128 bits of key.
Total complexity, 28*4=232

Improving the AES attack
8th round, random fault

19

`

`
`

`• A single fault injected in the 8th round will
spread to 4 bytes in the 9th round.

• This is equivalent to having 4 faults in each of
the 4 columns.

• A single fault can thus be used to determine
all key bytes.

• The offline key space is 232 as before. This
can be reduced to 28 using the key expansion
algorithm

XFC: A Framework for Exploitable Fault
Characterization in Block Ciphers

XFC

@DAC 2017 20

The Central Idea

S S

21

The Central Idea

Linear functions in

22

Specifying the Block Cipher

are Boolean functions

Could be Linear functions

or Non Linear functions

P C

XFC

23

Specifying the Block Cipher

are Boolean functions

Could be Linear functions

or Non Linear functions

AES Specification

40 functions
F1 (AddRoundKey) is Linear
F2 (SubBytes of Round 1) is Non-Linear
F3 (ShiftRows of Round 1) is Linear
F4 (MixColumns of Round 1) is Linear

F5 (AddRoundKey) is Linear
F6 (SubBytes of Round 2) is Non-Linear
F7 (ShiftRows of Round 2) is Linear
F8 (MixColumns of Round 2) is Linear

F37 (AddRoundKey of Round 9) is Linear
F38 (SubBytes of Round 10) is Non-Linear
F39 (ShiftRows of Round 10) is Linear
F40 (AddRoundKey of Round 10) is Linear

P C

24

Specifying the Fault Location

Example:

A Fault in the 1st Byte of the 5th Round SubBytes operation

XFC

P C

25

XFC’s Two Phases

XFC

26

(Phase 1) Fault Propagation
S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Key Addition

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Color the fault affected part.

Propagate and color as follows.

1. When passing through a linear layer, retain same color

2. When passing through a non-linear layer, change color

3. If two bytes of different colors are combined, change the
color.

Same colors are linearly correlated
Different colors are not correlated

27

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Diffusion Diffusion

S-box S-box S-box S-box

Key Addition

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

Linear

Non-Linear

Linear

(Phase 2) Key Determination

The offline complexity to find is 24 ; ie the possible values
can take.

Can be used to determine

Back propagate and try to match colors whenever we hit an s-box

Similarly,

28

Finding the Sweet Spot

Keep the block cipher specification fixed and iterate
through all possible fault locations

Sweet spots
XFC’s results are both sound and complete.

@ACM TODAES 2020

Multiple fault positions

29

Applications of XFC

XFC

Automatically evaluate new cipher algorithms for Fault Attacks

cipher algorithm

Fault Attack aware Compilers (for software)

.c

XFC

Compiler
.exe
with countermeasures incorporated

New cipher algorithm

30

Applications of XFC

XFC

Automatically evaluate new cipher algorithms for Fault Attacks

cipher algorithm

Fault Attack aware EDA tools (for VLSI design)

.verilog

XFC

EDA tool
.netlist
with countermeasures incorporated

New cipher algorithm

31

Mapping fault vulnerable operations to an
implementation

32

Algorithm Specification

Implementation

XFC
FEDS / SOLOMON

@TCHES 2020, @DATE 2020

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

33

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

34

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

35

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

36

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

37

SAT Clauses
of

Specification

SAT Causes
of

Implementation

input

Find an input which results in different
outputs

UNSAT
?Equivalent Not

Equivalentyes no

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

38

SAT Clauses
Specification

SAT Causes
Implementation

inputs

Find an input which results in different
outputs

UNSAT
?Equivalent Not

Equivalentyes no

39

SOLOMON: An automated framework for
detecting fault attack vulnerabilities in hardware

@DATE 2020

FEDS: An Automated framework for detect
fault attack vulnerabilities in Software

40

XFC

XFC

XFC

@TCHES 2020

Fault Evaluation of 7 different implementations of AES

41

Automated Countermeasures using XFC

cipher algorithm

Fault Attack aware Compilers

.c

XFC

Compiler
.exe or .netlist
with countermeasures incorporated

42

Thank you for your attention

43

Source code: https://bitbucket.org/casl/faultanalysis/src/master/

